折叠式月球飞行器的概念设计与仿真

Rong Jin
{"title":"折叠式月球飞行器的概念设计与仿真","authors":"Rong Jin","doi":"10.1109/CPEEE51686.2021.9383342","DOIUrl":null,"url":null,"abstract":"Moon exploration is an attractive research of interest especially along with the development of lunar vehicle technologies in the past decades. Here, a small lunar vehicle prototype with a foldable mechanism was proposed. It can fold and unfold in the lunar environment, which can reduce the volume by about 20%. The robotic arm of the lunar rover which incorporates the camera into its end-effector also helps reduce the number of vision sensors and extra energy consumption. Besides, a combination of solar panels and compact nuclear batteries can ensure the rover's endurance of operation on the moon. In addition, the folding process of the lunar rover, the ability to go uphill and downhill, and the ability to pass over obstacles are simulated in SOLIDWORKS MOTION. Accordingly, two optimization schemes, including adding more suspension systems and automatic route planning systems, are proposed. With the development of the foldable lunar vehicle, it became possible for large number of lunar vehicles to be sent to the moon in one time, which also provided the basis for the commercialization of the moon landing.","PeriodicalId":314015,"journal":{"name":"2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Conceptional Design and Simulation of a Foldable Lunar Vehicle\",\"authors\":\"Rong Jin\",\"doi\":\"10.1109/CPEEE51686.2021.9383342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moon exploration is an attractive research of interest especially along with the development of lunar vehicle technologies in the past decades. Here, a small lunar vehicle prototype with a foldable mechanism was proposed. It can fold and unfold in the lunar environment, which can reduce the volume by about 20%. The robotic arm of the lunar rover which incorporates the camera into its end-effector also helps reduce the number of vision sensors and extra energy consumption. Besides, a combination of solar panels and compact nuclear batteries can ensure the rover's endurance of operation on the moon. In addition, the folding process of the lunar rover, the ability to go uphill and downhill, and the ability to pass over obstacles are simulated in SOLIDWORKS MOTION. Accordingly, two optimization schemes, including adding more suspension systems and automatic route planning systems, are proposed. With the development of the foldable lunar vehicle, it became possible for large number of lunar vehicles to be sent to the moon in one time, which also provided the basis for the commercialization of the moon landing.\",\"PeriodicalId\":314015,\"journal\":{\"name\":\"2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPEEE51686.2021.9383342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPEEE51686.2021.9383342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

月球探测是一项极具吸引力的研究,特别是随着近几十年来月球载具技术的发展。在此,提出了一种具有可折叠机构的小型月球车原型。它可以在月球环境中折叠和展开,这可以减少约20%的体积。月球车的机械臂在其末端执行器中集成了摄像头,这也有助于减少视觉传感器的数量和额外的能量消耗。此外,太阳能电池板和紧凑型核电池的组合可以确保月球车在月球上的持久运行。此外,在SOLIDWORKS MOTION中模拟了月球车的折叠过程、上坡下坡的能力以及通过障碍物的能力。据此,提出了增加悬挂系统和自动路线规划系统两种优化方案。随着折叠式登月车的发展,一次将大量登月车送上月球成为可能,这也为登月的商业化提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Conceptional Design and Simulation of a Foldable Lunar Vehicle
Moon exploration is an attractive research of interest especially along with the development of lunar vehicle technologies in the past decades. Here, a small lunar vehicle prototype with a foldable mechanism was proposed. It can fold and unfold in the lunar environment, which can reduce the volume by about 20%. The robotic arm of the lunar rover which incorporates the camera into its end-effector also helps reduce the number of vision sensors and extra energy consumption. Besides, a combination of solar panels and compact nuclear batteries can ensure the rover's endurance of operation on the moon. In addition, the folding process of the lunar rover, the ability to go uphill and downhill, and the ability to pass over obstacles are simulated in SOLIDWORKS MOTION. Accordingly, two optimization schemes, including adding more suspension systems and automatic route planning systems, are proposed. With the development of the foldable lunar vehicle, it became possible for large number of lunar vehicles to be sent to the moon in one time, which also provided the basis for the commercialization of the moon landing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信