{"title":"三维集成电路设计中用于时序优化的热感知资源重新绑定算法","authors":"P. Lim, Taewhan Kim","doi":"10.1109/SOCDC.2010.5682913","DOIUrl":null,"url":null,"abstract":"This work proposes a resource rebinding algorithm in high-level synthesis of 3D IC designs to improve timing under a floorplan information with thermal profile. Our proposed algorithm iteratively extracts a set of operations on critical timing path and updates their bindings to fine-tune the timing variation caused by the irregular temperature distribution. Precisely, the algorithm rebinds operations so that the temperature-induced timing variations should be as low as possible while considering TSV (Through-Silicon Via) cost. Through experimentations using MediaBench designs, it is shown that our thermal-aware rebinding algorithm is able to reduce the design latency by 15% ∼ 20% further over the results by conventional thermal-unaware high-level synthesis.","PeriodicalId":380183,"journal":{"name":"2010 International SoC Design Conference","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-aware resource rebinding algorithm for timing optimization in 3D IC designs\",\"authors\":\"P. Lim, Taewhan Kim\",\"doi\":\"10.1109/SOCDC.2010.5682913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a resource rebinding algorithm in high-level synthesis of 3D IC designs to improve timing under a floorplan information with thermal profile. Our proposed algorithm iteratively extracts a set of operations on critical timing path and updates their bindings to fine-tune the timing variation caused by the irregular temperature distribution. Precisely, the algorithm rebinds operations so that the temperature-induced timing variations should be as low as possible while considering TSV (Through-Silicon Via) cost. Through experimentations using MediaBench designs, it is shown that our thermal-aware rebinding algorithm is able to reduce the design latency by 15% ∼ 20% further over the results by conventional thermal-unaware high-level synthesis.\",\"PeriodicalId\":380183,\"journal\":{\"name\":\"2010 International SoC Design Conference\",\"volume\":\"343 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International SoC Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCDC.2010.5682913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International SoC Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCDC.2010.5682913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal-aware resource rebinding algorithm for timing optimization in 3D IC designs
This work proposes a resource rebinding algorithm in high-level synthesis of 3D IC designs to improve timing under a floorplan information with thermal profile. Our proposed algorithm iteratively extracts a set of operations on critical timing path and updates their bindings to fine-tune the timing variation caused by the irregular temperature distribution. Precisely, the algorithm rebinds operations so that the temperature-induced timing variations should be as low as possible while considering TSV (Through-Silicon Via) cost. Through experimentations using MediaBench designs, it is shown that our thermal-aware rebinding algorithm is able to reduce the design latency by 15% ∼ 20% further over the results by conventional thermal-unaware high-level synthesis.