Chebyshev-Koornwinder振荡器的阶梯算子

V. Borzov, E. Damaskinsky
{"title":"Chebyshev-Koornwinder振荡器的阶梯算子","authors":"V. Borzov, E. Damaskinsky","doi":"10.1109/DD.2013.6712797","DOIUrl":null,"url":null,"abstract":"We obtain differential expressions for ladder operators of generalized oscillator related to the bivariate Chebyshev-Koornwinder (CK) polynomials. Using the representation of differential operators of Koornwinder by “number operators” of CK-oscillator, we get a completion of Koornwinder algebra. This extension is an Abelian subalgebra of CK-oscillator algebra.","PeriodicalId":340014,"journal":{"name":"Proceedings of the International Conference Days on Diffraction 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ladder operators for Chebyshev-Koornwinder oscillator\",\"authors\":\"V. Borzov, E. Damaskinsky\",\"doi\":\"10.1109/DD.2013.6712797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain differential expressions for ladder operators of generalized oscillator related to the bivariate Chebyshev-Koornwinder (CK) polynomials. Using the representation of differential operators of Koornwinder by “number operators” of CK-oscillator, we get a completion of Koornwinder algebra. This extension is an Abelian subalgebra of CK-oscillator algebra.\",\"PeriodicalId\":340014,\"journal\":{\"name\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2013.6712797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Days on Diffraction 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2013.6712797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

得到了与二元Chebyshev-Koornwinder (CK)多项式相关的广义振子阶梯算子的微分表达式。利用k -振子的“数算子”来表示Koornwinder的微分算子,得到了Koornwinder代数的补全。这个扩展是ck -振子代数的一个阿贝尔子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ladder operators for Chebyshev-Koornwinder oscillator
We obtain differential expressions for ladder operators of generalized oscillator related to the bivariate Chebyshev-Koornwinder (CK) polynomials. Using the representation of differential operators of Koornwinder by “number operators” of CK-oscillator, we get a completion of Koornwinder algebra. This extension is an Abelian subalgebra of CK-oscillator algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信