{"title":"Chebyshev-Koornwinder振荡器的阶梯算子","authors":"V. Borzov, E. Damaskinsky","doi":"10.1109/DD.2013.6712797","DOIUrl":null,"url":null,"abstract":"We obtain differential expressions for ladder operators of generalized oscillator related to the bivariate Chebyshev-Koornwinder (CK) polynomials. Using the representation of differential operators of Koornwinder by “number operators” of CK-oscillator, we get a completion of Koornwinder algebra. This extension is an Abelian subalgebra of CK-oscillator algebra.","PeriodicalId":340014,"journal":{"name":"Proceedings of the International Conference Days on Diffraction 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ladder operators for Chebyshev-Koornwinder oscillator\",\"authors\":\"V. Borzov, E. Damaskinsky\",\"doi\":\"10.1109/DD.2013.6712797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain differential expressions for ladder operators of generalized oscillator related to the bivariate Chebyshev-Koornwinder (CK) polynomials. Using the representation of differential operators of Koornwinder by “number operators” of CK-oscillator, we get a completion of Koornwinder algebra. This extension is an Abelian subalgebra of CK-oscillator algebra.\",\"PeriodicalId\":340014,\"journal\":{\"name\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2013.6712797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Days on Diffraction 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2013.6712797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ladder operators for Chebyshev-Koornwinder oscillator
We obtain differential expressions for ladder operators of generalized oscillator related to the bivariate Chebyshev-Koornwinder (CK) polynomials. Using the representation of differential operators of Koornwinder by “number operators” of CK-oscillator, we get a completion of Koornwinder algebra. This extension is an Abelian subalgebra of CK-oscillator algebra.