Nagao EBMT模型检索与自适应的数值方法

Kun He, T. Zhao, Y. Lepage
{"title":"Nagao EBMT模型检索与自适应的数值方法","authors":"Kun He, T. Zhao, Y. Lepage","doi":"10.1109/ICACSIS.2018.8618226","DOIUrl":null,"url":null,"abstract":"We build an example-based machine translation system. It is an instance of case-based reasoning for machine translation. We introduce numerical methods instead of symbolic methods in two steps: retrieval and adaptation. For retrieval, we test three different approaches to define similarity between sentences. For adaptation, we use neural networks to solve analogies between sentences across languages. Oracle experiments allow to identify the best retrieval technique and to estimate the possibilities of such an approach. The system could place itself between a statistical and a neural machine translation systems on a task with not so large data.","PeriodicalId":207227,"journal":{"name":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Methods for Retrieval and Adaptation in Nagao’s EBMT model\",\"authors\":\"Kun He, T. Zhao, Y. Lepage\",\"doi\":\"10.1109/ICACSIS.2018.8618226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build an example-based machine translation system. It is an instance of case-based reasoning for machine translation. We introduce numerical methods instead of symbolic methods in two steps: retrieval and adaptation. For retrieval, we test three different approaches to define similarity between sentences. For adaptation, we use neural networks to solve analogies between sentences across languages. Oracle experiments allow to identify the best retrieval technique and to estimate the possibilities of such an approach. The system could place itself between a statistical and a neural machine translation systems on a task with not so large data.\",\"PeriodicalId\":207227,\"journal\":{\"name\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2018.8618226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2018.8618226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个基于实例的机器翻译系统。这是机器翻译基于案例推理的一个实例。我们在检索和自适应两个步骤中引入数值方法来代替符号方法。对于检索,我们测试了三种不同的方法来定义句子之间的相似性。对于适应,我们使用神经网络来解决跨语言句子之间的类比。Oracle实验允许识别最佳检索技术并估计这种方法的可能性。该系统可以将自己置于统计和神经机器翻译系统之间,处理数据量不大的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Methods for Retrieval and Adaptation in Nagao’s EBMT model
We build an example-based machine translation system. It is an instance of case-based reasoning for machine translation. We introduce numerical methods instead of symbolic methods in two steps: retrieval and adaptation. For retrieval, we test three different approaches to define similarity between sentences. For adaptation, we use neural networks to solve analogies between sentences across languages. Oracle experiments allow to identify the best retrieval technique and to estimate the possibilities of such an approach. The system could place itself between a statistical and a neural machine translation systems on a task with not so large data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信