用有序森林估计器预测足球比赛结果

D. Goller, M. Knaus, M. Lechner, Gabriel Okasa
{"title":"用有序森林估计器预测足球比赛结果","authors":"D. Goller, M. Knaus, M. Lechner, Gabriel Okasa","doi":"10.4337/9781789906530.00026","DOIUrl":null,"url":null,"abstract":"We predict the probabilities for a draw, a home win, and an away win, for the games of the German Football Bundesliga (BL1) with a new machine-learning estimator using the (large) information available up to that date. We use these individual predictions in order to simulate a league table for every game day until the end of the season. This combination of a (stochastic) simulation approach with machine learning allows us to come up with statements about the likelihood that a particular team is reaching specific places in the final league table (i.e. champion, relegation, etc.). The machine-learning algorithm used, builds on a recent development of an Ordered Random Forest. This estimator generalises common estimators like ordered probit or ordered logit maximum likelihood and is able to recover essentially the same output as the standard estimators, such as the probabilities of the alternative conditional on covariates. The approach is already in use and results for the current season can be found at www.sew.unisg.ch/soccer_analytics.","PeriodicalId":125066,"journal":{"name":"A Modern Guide to Sports Economics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting match outcomes in football by an Ordered Forest estimator\",\"authors\":\"D. Goller, M. Knaus, M. Lechner, Gabriel Okasa\",\"doi\":\"10.4337/9781789906530.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We predict the probabilities for a draw, a home win, and an away win, for the games of the German Football Bundesliga (BL1) with a new machine-learning estimator using the (large) information available up to that date. We use these individual predictions in order to simulate a league table for every game day until the end of the season. This combination of a (stochastic) simulation approach with machine learning allows us to come up with statements about the likelihood that a particular team is reaching specific places in the final league table (i.e. champion, relegation, etc.). The machine-learning algorithm used, builds on a recent development of an Ordered Random Forest. This estimator generalises common estimators like ordered probit or ordered logit maximum likelihood and is able to recover essentially the same output as the standard estimators, such as the probabilities of the alternative conditional on covariates. The approach is already in use and results for the current season can be found at www.sew.unisg.ch/soccer_analytics.\",\"PeriodicalId\":125066,\"journal\":{\"name\":\"A Modern Guide to Sports Economics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"A Modern Guide to Sports Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4337/9781789906530.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Modern Guide to Sports Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4337/9781789906530.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们使用一个新的机器学习估计器,利用到目前为止可用的(大量)信息,预测了德国足球德甲(BL1)比赛的平局、主场胜利和客场胜利的概率。我们使用这些个人预测来模拟每个比赛日的积分榜,直到赛季结束。这种(随机)模拟方法与机器学习的结合使我们能够提出关于特定球队在最终联赛表中达到特定位置(即冠军,降级等)的可能性的陈述。所使用的机器学习算法建立在有序随机森林的最新发展基础上。这个估计器推广了常见的估计器,如有序probit或有序logit最大似然,并且能够恢复与标准估计器基本相同的输出,例如在协变量上的可选条件的概率。这种方法已经在使用,当前赛季的结果可以在www.sew.unisg.ch/soccer_analytics上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting match outcomes in football by an Ordered Forest estimator
We predict the probabilities for a draw, a home win, and an away win, for the games of the German Football Bundesliga (BL1) with a new machine-learning estimator using the (large) information available up to that date. We use these individual predictions in order to simulate a league table for every game day until the end of the season. This combination of a (stochastic) simulation approach with machine learning allows us to come up with statements about the likelihood that a particular team is reaching specific places in the final league table (i.e. champion, relegation, etc.). The machine-learning algorithm used, builds on a recent development of an Ordered Random Forest. This estimator generalises common estimators like ordered probit or ordered logit maximum likelihood and is able to recover essentially the same output as the standard estimators, such as the probabilities of the alternative conditional on covariates. The approach is already in use and results for the current season can be found at www.sew.unisg.ch/soccer_analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信