核密度估计的全局模式:RAST聚类

O. Wirjadi, T. Breuel
{"title":"核密度估计的全局模式:RAST聚类","authors":"O. Wirjadi, T. Breuel","doi":"10.1109/HIS.2007.32","DOIUrl":null,"url":null,"abstract":"The mean shift algorithm is a widely used method for finding local maxima in feature spaces. Mean shift algorithms have been shown in the literature to be equivalent to a gradient ascent optimization of a kernel density estimate. This paper describes a novel, globally optimal optimization method and compares the suboptimal mean shift solutions with the globally optimal solutions derived by the new algorithm. Experimental results on both simulated and real data show that the new algorithm yields solutions that are often significantly better than the suboptimal solutions identified by the mean shift algorithm, and that it scales better to large sample sizes and is more robust to noise levels.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Modes in Kernel Density Estimation: RAST Clustering\",\"authors\":\"O. Wirjadi, T. Breuel\",\"doi\":\"10.1109/HIS.2007.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mean shift algorithm is a widely used method for finding local maxima in feature spaces. Mean shift algorithms have been shown in the literature to be equivalent to a gradient ascent optimization of a kernel density estimate. This paper describes a novel, globally optimal optimization method and compares the suboptimal mean shift solutions with the globally optimal solutions derived by the new algorithm. Experimental results on both simulated and real data show that the new algorithm yields solutions that are often significantly better than the suboptimal solutions identified by the mean shift algorithm, and that it scales better to large sample sizes and is more robust to noise levels.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

均值移位算法是一种在特征空间中广泛应用的寻找局部极大值的方法。均值移位算法在文献中被证明等同于核密度估计的梯度上升优化。本文提出了一种新的全局最优优化方法,并将该算法得到的次优均值漂移解与全局最优解进行了比较。在模拟和真实数据上的实验结果表明,新算法产生的解通常明显优于均值移位算法识别的次优解,并且它可以更好地扩展到大样本量,并且对噪声水平具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Modes in Kernel Density Estimation: RAST Clustering
The mean shift algorithm is a widely used method for finding local maxima in feature spaces. Mean shift algorithms have been shown in the literature to be equivalent to a gradient ascent optimization of a kernel density estimate. This paper describes a novel, globally optimal optimization method and compares the suboptimal mean shift solutions with the globally optimal solutions derived by the new algorithm. Experimental results on both simulated and real data show that the new algorithm yields solutions that are often significantly better than the suboptimal solutions identified by the mean shift algorithm, and that it scales better to large sample sizes and is more robust to noise levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信