使用可视化数据挖掘工具来探索一组关联规则

G. Bothorel, Mathieu Serrurier, Christophe Hurter
{"title":"使用可视化数据挖掘工具来探索一组关联规则","authors":"G. Bothorel, Mathieu Serrurier, Christophe Hurter","doi":"10.1145/2044354.2044369","DOIUrl":null,"url":null,"abstract":"Data Mining aims at extracting maximum of knowledge from huge databases. It is realized by an automatic process or by data visual exploration with interactive tools. Automatic data mining extracts all the patterns which match a set of metrics. The limit of such algorithms is the amount of extracted data which can be larger than the initial data volume. In this article, we focus on association rules extraction with Apriori algorithm. After the description of a characterization model of a set of association rules, we propose to explore the results of a Data Mining algorithm with an interactive visual tool. There are two advantages. First it will visualize the results of the algorithms from different points of view (metrics, rules attributes...). Then it allows us to select easily inside large set of rules the most relevant ones.","PeriodicalId":131420,"journal":{"name":"Interaction Homme-Machine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Utilisation d'outils de visual data mining pour l'exploration d'un ensemble de règles d'association\",\"authors\":\"G. Bothorel, Mathieu Serrurier, Christophe Hurter\",\"doi\":\"10.1145/2044354.2044369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Mining aims at extracting maximum of knowledge from huge databases. It is realized by an automatic process or by data visual exploration with interactive tools. Automatic data mining extracts all the patterns which match a set of metrics. The limit of such algorithms is the amount of extracted data which can be larger than the initial data volume. In this article, we focus on association rules extraction with Apriori algorithm. After the description of a characterization model of a set of association rules, we propose to explore the results of a Data Mining algorithm with an interactive visual tool. There are two advantages. First it will visualize the results of the algorithms from different points of view (metrics, rules attributes...). Then it allows us to select easily inside large set of rules the most relevant ones.\",\"PeriodicalId\":131420,\"journal\":{\"name\":\"Interaction Homme-Machine\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interaction Homme-Machine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2044354.2044369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interaction Homme-Machine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2044354.2044369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据挖掘旨在从庞大的数据库中提取最大限度的知识。它可以通过自动过程或使用交互式工具进行数据可视化探索来实现。自动数据挖掘提取与一组指标匹配的所有模式。这种算法的限制是提取的数据量可能大于初始数据量。本文主要研究了用Apriori算法提取关联规则。在描述了一组关联规则的表征模型之后,我们建议使用交互式可视化工具来探索数据挖掘算法的结果。有两个好处。首先,它将从不同的角度(指标、规则属性……)可视化算法的结果。然后,它允许我们在大量规则中轻松选择最相关的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilisation d'outils de visual data mining pour l'exploration d'un ensemble de règles d'association
Data Mining aims at extracting maximum of knowledge from huge databases. It is realized by an automatic process or by data visual exploration with interactive tools. Automatic data mining extracts all the patterns which match a set of metrics. The limit of such algorithms is the amount of extracted data which can be larger than the initial data volume. In this article, we focus on association rules extraction with Apriori algorithm. After the description of a characterization model of a set of association rules, we propose to explore the results of a Data Mining algorithm with an interactive visual tool. There are two advantages. First it will visualize the results of the algorithms from different points of view (metrics, rules attributes...). Then it allows us to select easily inside large set of rules the most relevant ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信