利用固态磁盘中多芯片并行性的缓冲区替换算法

Jinho Seol, Hyotaek Shim, Jaegeuk Kim, S. Maeng
{"title":"利用固态磁盘中多芯片并行性的缓冲区替换算法","authors":"Jinho Seol, Hyotaek Shim, Jaegeuk Kim, S. Maeng","doi":"10.1145/1629395.1629416","DOIUrl":null,"url":null,"abstract":"Solid State Disks (SSDs) are superior to magnetic disks from a performance point of view due to the favorable features of NAND flash memory. Furthermore, thanks to improvement on flash memory density and adopting a multi-chip architecture, SSDs replace magnetic disks rapidly. Most previous studies have been conducted for enhancing the performance of SSDs, but these studies have been worked on the assumption that the operation unit of a host interface is the same as the operation unit of NAND flash memory, where it is needless to give consideration to partially-filled pages. In this paper, we analyze the overhead caused by the partially-filled pages, and propose a buffer replacement algorithm exploiting multi-chip parallelism to enhance the write performance. Our simulation results show that the proposed algorithm improves the write performance by up to 30% over existing approaches.","PeriodicalId":136293,"journal":{"name":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A buffer replacement algorithm exploiting multi-chip parallelism in solid state disks\",\"authors\":\"Jinho Seol, Hyotaek Shim, Jaegeuk Kim, S. Maeng\",\"doi\":\"10.1145/1629395.1629416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid State Disks (SSDs) are superior to magnetic disks from a performance point of view due to the favorable features of NAND flash memory. Furthermore, thanks to improvement on flash memory density and adopting a multi-chip architecture, SSDs replace magnetic disks rapidly. Most previous studies have been conducted for enhancing the performance of SSDs, but these studies have been worked on the assumption that the operation unit of a host interface is the same as the operation unit of NAND flash memory, where it is needless to give consideration to partially-filled pages. In this paper, we analyze the overhead caused by the partially-filled pages, and propose a buffer replacement algorithm exploiting multi-chip parallelism to enhance the write performance. Our simulation results show that the proposed algorithm improves the write performance by up to 30% over existing approaches.\",\"PeriodicalId\":136293,\"journal\":{\"name\":\"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629395.1629416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629395.1629416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

从性能的角度来看,固态硬盘(ssd)优于磁盘,这是由于NAND闪存的有利特性。此外,由于闪存密度的提高和采用多芯片架构,ssd可以迅速取代磁盘。以往的研究大多是为了提高ssd的性能,但这些研究都是在假设主机接口的操作单元与NAND闪存的操作单元相同的情况下进行的,不需要考虑部分填充的页面。在本文中,我们分析了部分填充页所带来的开销,并提出了一种利用多芯片并行性来提高写入性能的缓冲区替换算法。仿真结果表明,该算法比现有算法的写入性能提高了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A buffer replacement algorithm exploiting multi-chip parallelism in solid state disks
Solid State Disks (SSDs) are superior to magnetic disks from a performance point of view due to the favorable features of NAND flash memory. Furthermore, thanks to improvement on flash memory density and adopting a multi-chip architecture, SSDs replace magnetic disks rapidly. Most previous studies have been conducted for enhancing the performance of SSDs, but these studies have been worked on the assumption that the operation unit of a host interface is the same as the operation unit of NAND flash memory, where it is needless to give consideration to partially-filled pages. In this paper, we analyze the overhead caused by the partially-filled pages, and propose a buffer replacement algorithm exploiting multi-chip parallelism to enhance the write performance. Our simulation results show that the proposed algorithm improves the write performance by up to 30% over existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信