基于人工神经网络和多元线性回归的短期负荷预测

S. Govender, K. Folly
{"title":"基于人工神经网络和多元线性回归的短期负荷预测","authors":"S. Govender, K. Folly","doi":"10.1109/PowerAfrica.2019.8928857","DOIUrl":null,"url":null,"abstract":"In this paper, two methods for short-term load forecasting are compared; namely, artificial neural networks (ANNs) and multiple linear regression (MLR). Only input features that had a very large correlation with the load were used. Historic load data are shown to have the strongest correlation with the current load data than other weather variables such as temperature and humidity. Simulation results show that the MLR give better results for the seasonal forecasts, whereas the ANN showed an overall lower mean absolute percentage error (MAPE) for the daily forecasts.","PeriodicalId":308661,"journal":{"name":"2019 IEEE PES/IAS PowerAfrica","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Short-Term Load Forecasting using Artificial Neural Networks and Multiple Linear Regression\",\"authors\":\"S. Govender, K. Folly\",\"doi\":\"10.1109/PowerAfrica.2019.8928857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two methods for short-term load forecasting are compared; namely, artificial neural networks (ANNs) and multiple linear regression (MLR). Only input features that had a very large correlation with the load were used. Historic load data are shown to have the strongest correlation with the current load data than other weather variables such as temperature and humidity. Simulation results show that the MLR give better results for the seasonal forecasts, whereas the ANN showed an overall lower mean absolute percentage error (MAPE) for the daily forecasts.\",\"PeriodicalId\":308661,\"journal\":{\"name\":\"2019 IEEE PES/IAS PowerAfrica\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES/IAS PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica.2019.8928857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2019.8928857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文比较了两种短期负荷预测方法;即人工神经网络(ANNs)和多元线性回归(MLR)。只使用与负载有很大相关性的输入特征。与温度和湿度等其他天气变量相比,历史负荷数据与当前负荷数据的相关性最强。仿真结果表明,MLR对季节预报的效果较好,而人工神经网络对日预报的平均绝对百分比误差(MAPE)总体较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Load Forecasting using Artificial Neural Networks and Multiple Linear Regression
In this paper, two methods for short-term load forecasting are compared; namely, artificial neural networks (ANNs) and multiple linear regression (MLR). Only input features that had a very large correlation with the load were used. Historic load data are shown to have the strongest correlation with the current load data than other weather variables such as temperature and humidity. Simulation results show that the MLR give better results for the seasonal forecasts, whereas the ANN showed an overall lower mean absolute percentage error (MAPE) for the daily forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信