{"title":"基于人眼视觉系统的无参考立体视频质量评价","authors":"Xiaofang Zhang, Sumei Li","doi":"10.1109/VCIP56404.2022.10008866","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a no-reference stereoscopic video quality assessment (NR-SVQA) based on human vision system (HVS). Firstly, we build a frequency transform module (FTM), which maps spatial domain to frequency domain by cosine discrete transform (DCT), and selects important frequency components through channel attention mechanism. Secondly, we use dynamic convolution to regionally process the same input. Thirdly, we use convolutional long short term memory (Conv-LSTM) to extract spatio-temporal information rather than just temporal information. Finally, in order to better simulate the visual characteristics of human eyes, we build a optic chiasm module. The experiment results show that our method outperforms any other methods.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No Reference Stereoscopic Video Quality Assessment based on Human Vision System\",\"authors\":\"Xiaofang Zhang, Sumei Li\",\"doi\":\"10.1109/VCIP56404.2022.10008866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a no-reference stereoscopic video quality assessment (NR-SVQA) based on human vision system (HVS). Firstly, we build a frequency transform module (FTM), which maps spatial domain to frequency domain by cosine discrete transform (DCT), and selects important frequency components through channel attention mechanism. Secondly, we use dynamic convolution to regionally process the same input. Thirdly, we use convolutional long short term memory (Conv-LSTM) to extract spatio-temporal information rather than just temporal information. Finally, in order to better simulate the visual characteristics of human eyes, we build a optic chiasm module. The experiment results show that our method outperforms any other methods.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
No Reference Stereoscopic Video Quality Assessment based on Human Vision System
In this paper, we propose a no-reference stereoscopic video quality assessment (NR-SVQA) based on human vision system (HVS). Firstly, we build a frequency transform module (FTM), which maps spatial domain to frequency domain by cosine discrete transform (DCT), and selects important frequency components through channel attention mechanism. Secondly, we use dynamic convolution to regionally process the same input. Thirdly, we use convolutional long short term memory (Conv-LSTM) to extract spatio-temporal information rather than just temporal information. Finally, in order to better simulate the visual characteristics of human eyes, we build a optic chiasm module. The experiment results show that our method outperforms any other methods.