基于人眼视觉系统的无参考立体视频质量评价

Xiaofang Zhang, Sumei Li
{"title":"基于人眼视觉系统的无参考立体视频质量评价","authors":"Xiaofang Zhang, Sumei Li","doi":"10.1109/VCIP56404.2022.10008866","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a no-reference stereoscopic video quality assessment (NR-SVQA) based on human vision system (HVS). Firstly, we build a frequency transform module (FTM), which maps spatial domain to frequency domain by cosine discrete transform (DCT), and selects important frequency components through channel attention mechanism. Secondly, we use dynamic convolution to regionally process the same input. Thirdly, we use convolutional long short term memory (Conv-LSTM) to extract spatio-temporal information rather than just temporal information. Finally, in order to better simulate the visual characteristics of human eyes, we build a optic chiasm module. The experiment results show that our method outperforms any other methods.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No Reference Stereoscopic Video Quality Assessment based on Human Vision System\",\"authors\":\"Xiaofang Zhang, Sumei Li\",\"doi\":\"10.1109/VCIP56404.2022.10008866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a no-reference stereoscopic video quality assessment (NR-SVQA) based on human vision system (HVS). Firstly, we build a frequency transform module (FTM), which maps spatial domain to frequency domain by cosine discrete transform (DCT), and selects important frequency components through channel attention mechanism. Secondly, we use dynamic convolution to regionally process the same input. Thirdly, we use convolutional long short term memory (Conv-LSTM) to extract spatio-temporal information rather than just temporal information. Finally, in order to better simulate the visual characteristics of human eyes, we build a optic chiasm module. The experiment results show that our method outperforms any other methods.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于人类视觉系统(HVS)的无参考立体视频质量评估(NR-SVQA)方法。首先,我们构建了一个频率变换模块(FTM),通过余弦离散变换(DCT)将空间域映射到频域,并通过信道注意机制选择重要的频率分量;其次,我们使用动态卷积对相同输入进行区域处理。第三,我们使用卷积长短期记忆(convl - lstm)提取时空信息,而不仅仅是时间信息。最后,为了更好地模拟人眼的视觉特性,我们构建了视交叉模块。实验结果表明,该方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No Reference Stereoscopic Video Quality Assessment based on Human Vision System
In this paper, we propose a no-reference stereoscopic video quality assessment (NR-SVQA) based on human vision system (HVS). Firstly, we build a frequency transform module (FTM), which maps spatial domain to frequency domain by cosine discrete transform (DCT), and selects important frequency components through channel attention mechanism. Secondly, we use dynamic convolution to regionally process the same input. Thirdly, we use convolutional long short term memory (Conv-LSTM) to extract spatio-temporal information rather than just temporal information. Finally, in order to better simulate the visual characteristics of human eyes, we build a optic chiasm module. The experiment results show that our method outperforms any other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信