一个自动化的多模态生物识别系统和融合

Y. Kumar, A. Nigam, Kamlesh Tiwari, Phalguni Gupta
{"title":"一个自动化的多模态生物识别系统和融合","authors":"Y. Kumar, A. Nigam, Kamlesh Tiwari, Phalguni Gupta","doi":"10.1109/CIBIM.2014.7015438","DOIUrl":null,"url":null,"abstract":"This paper proposed an automated multimodal biometric system and fusion technique to eliminates the unimodal limitations. Unimodal biometric system has many problems like occlusion, illumination, pose variation. This proposed multimodal biometric system use face, left ear, left palm, right palmprint, left knuckleprint, right knuckleprint as biometric traits. This multimodal biometric system has auto positioning device for face and ear image acquisition. An another device is created for palmprint and knuckleprint acquisition. This proposed biometric system use an efficient image enhancement, SURF based feature extraction and SURF based feature matching techniques for all used biometric trait images. This system use two level fusion strategy. Feature level fusion is used to make more discriminative feature template for each biometric trait and score level fusion is used to make final fused score from all used biometric traits.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An automated multimodal biometric system and fusion\",\"authors\":\"Y. Kumar, A. Nigam, Kamlesh Tiwari, Phalguni Gupta\",\"doi\":\"10.1109/CIBIM.2014.7015438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed an automated multimodal biometric system and fusion technique to eliminates the unimodal limitations. Unimodal biometric system has many problems like occlusion, illumination, pose variation. This proposed multimodal biometric system use face, left ear, left palm, right palmprint, left knuckleprint, right knuckleprint as biometric traits. This multimodal biometric system has auto positioning device for face and ear image acquisition. An another device is created for palmprint and knuckleprint acquisition. This proposed biometric system use an efficient image enhancement, SURF based feature extraction and SURF based feature matching techniques for all used biometric trait images. This system use two level fusion strategy. Feature level fusion is used to make more discriminative feature template for each biometric trait and score level fusion is used to make final fused score from all used biometric traits.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种自动化的多模态生物识别系统和融合技术,以消除单模态的局限性。单峰生物识别系统存在遮挡、光照、姿态变化等问题。本文提出的多模态生物识别系统以面部、左耳、左手掌、右掌纹、左指关节印、右指关节印为生物特征。该多模态生物识别系统具有人脸和耳部图像采集的自动定位装置。另一个设备是创建掌纹和指关节指纹采集。该系统采用高效的图像增强、基于SURF的特征提取和基于SURF的特征匹配技术对所有使用的生物特征图像进行处理。该系统采用两级融合策略。采用特征级融合为每个生物特征构建更具判别性的特征模板,采用分数级融合对所有使用的生物特征进行最终融合得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automated multimodal biometric system and fusion
This paper proposed an automated multimodal biometric system and fusion technique to eliminates the unimodal limitations. Unimodal biometric system has many problems like occlusion, illumination, pose variation. This proposed multimodal biometric system use face, left ear, left palm, right palmprint, left knuckleprint, right knuckleprint as biometric traits. This multimodal biometric system has auto positioning device for face and ear image acquisition. An another device is created for palmprint and knuckleprint acquisition. This proposed biometric system use an efficient image enhancement, SURF based feature extraction and SURF based feature matching techniques for all used biometric trait images. This system use two level fusion strategy. Feature level fusion is used to make more discriminative feature template for each biometric trait and score level fusion is used to make final fused score from all used biometric traits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信