{"title":"面向多存储摄取的动态数据放置","authors":"Jiang Du, John Meehan, Nesime Tatbul, S. Zdonik","doi":"10.1145/3129292.3129297","DOIUrl":null,"url":null,"abstract":"Integrating low-latency data streaming into data warehouse architectures has become an important enhancement to support modern data warehousing applications. In these architectures, heterogeneous workloads with data ingestion and analytical queries must be executed with strict performance guarantees. Furthermore, the data warehouse may consists of multiple different types of storage engines (a.k.a., polystores or multi-stores). A paramount problem is data placement; different workload scenarios call for different data placement designs. Moreover, workload conditions change frequently. In this paper, we provide evidence that a dynamic, workload-driven approach is needed for data placement in polystores with low-latency data ingestion support. We study the problem based on the characteristics of the TPC-DI benchmark in the context of an abbreviated polystore that consists of S-Store and Postgres.","PeriodicalId":407894,"journal":{"name":"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Dynamic Data Placement for Polystore Ingestion\",\"authors\":\"Jiang Du, John Meehan, Nesime Tatbul, S. Zdonik\",\"doi\":\"10.1145/3129292.3129297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating low-latency data streaming into data warehouse architectures has become an important enhancement to support modern data warehousing applications. In these architectures, heterogeneous workloads with data ingestion and analytical queries must be executed with strict performance guarantees. Furthermore, the data warehouse may consists of multiple different types of storage engines (a.k.a., polystores or multi-stores). A paramount problem is data placement; different workload scenarios call for different data placement designs. Moreover, workload conditions change frequently. In this paper, we provide evidence that a dynamic, workload-driven approach is needed for data placement in polystores with low-latency data ingestion support. We study the problem based on the characteristics of the TPC-DI benchmark in the context of an abbreviated polystore that consists of S-Store and Postgres.\",\"PeriodicalId\":407894,\"journal\":{\"name\":\"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129292.3129297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129292.3129297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Dynamic Data Placement for Polystore Ingestion
Integrating low-latency data streaming into data warehouse architectures has become an important enhancement to support modern data warehousing applications. In these architectures, heterogeneous workloads with data ingestion and analytical queries must be executed with strict performance guarantees. Furthermore, the data warehouse may consists of multiple different types of storage engines (a.k.a., polystores or multi-stores). A paramount problem is data placement; different workload scenarios call for different data placement designs. Moreover, workload conditions change frequently. In this paper, we provide evidence that a dynamic, workload-driven approach is needed for data placement in polystores with low-latency data ingestion support. We study the problem based on the characteristics of the TPC-DI benchmark in the context of an abbreviated polystore that consists of S-Store and Postgres.