基于大规模网络迭代图采样的子网络集可视化

Namiko Toriyama, Mitsuo Yoshida, T. Itoh
{"title":"基于大规模网络迭代图采样的子网络集可视化","authors":"Namiko Toriyama, Mitsuo Yoshida, T. Itoh","doi":"10.1109/iv53921.2021.00011","DOIUrl":null,"url":null,"abstract":"Multi-layer network visualization techniques have been developed so that users can firstly overview the largescale network and then explore the interesting parts of the data. Meanwhile, local features of the networks are often more interesting rather than their overall structures. It often happens with particular kinds of applications such as social networks. We developed a visualization technique for such types of large-scale networks. The technique iteratively applies a graph sampling algorithm to extract small-scale sub-networks from a large-scale network and then visualize the features of the sub-networks as hierarchically arranged icons. User-specified sub-networks are then visualized by applying our own graph visualization technique. Using networks generated from Twitter data, we actually visualize small-scale networks using the proposed method.","PeriodicalId":380260,"journal":{"name":"2021 25th International Conference Information Visualisation (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of sub-network sets by iterative graph sampling from large scale networks\",\"authors\":\"Namiko Toriyama, Mitsuo Yoshida, T. Itoh\",\"doi\":\"10.1109/iv53921.2021.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-layer network visualization techniques have been developed so that users can firstly overview the largescale network and then explore the interesting parts of the data. Meanwhile, local features of the networks are often more interesting rather than their overall structures. It often happens with particular kinds of applications such as social networks. We developed a visualization technique for such types of large-scale networks. The technique iteratively applies a graph sampling algorithm to extract small-scale sub-networks from a large-scale network and then visualize the features of the sub-networks as hierarchically arranged icons. User-specified sub-networks are then visualized by applying our own graph visualization technique. Using networks generated from Twitter data, we actually visualize small-scale networks using the proposed method.\",\"PeriodicalId\":380260,\"journal\":{\"name\":\"2021 25th International Conference Information Visualisation (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv53921.2021.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv53921.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多层网络可视化技术已经被开发出来,使用户可以首先概述大规模的网络,然后探索数据中有趣的部分。与此同时,网络的局部特征往往比它们的整体结构更有趣。它经常发生在特定类型的应用程序中,例如社交网络。我们为这种类型的大规模网络开发了一种可视化技术。该技术迭代地应用图采样算法从大规模网络中提取小规模的子网络,然后将子网络的特征可视化为分层排列的图标。然后通过应用我们自己的图形可视化技术对用户指定的子网进行可视化。使用从Twitter数据生成的网络,我们实际上使用所提出的方法可视化小规模网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of sub-network sets by iterative graph sampling from large scale networks
Multi-layer network visualization techniques have been developed so that users can firstly overview the largescale network and then explore the interesting parts of the data. Meanwhile, local features of the networks are often more interesting rather than their overall structures. It often happens with particular kinds of applications such as social networks. We developed a visualization technique for such types of large-scale networks. The technique iteratively applies a graph sampling algorithm to extract small-scale sub-networks from a large-scale network and then visualize the features of the sub-networks as hierarchically arranged icons. User-specified sub-networks are then visualized by applying our own graph visualization technique. Using networks generated from Twitter data, we actually visualize small-scale networks using the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信