小数据集剩余使用寿命预测的序列自适应对抗网络

Haixin Lv, Jinglong Chen, Tongyang Pan
{"title":"小数据集剩余使用寿命预测的序列自适应对抗网络","authors":"Haixin Lv, Jinglong Chen, Tongyang Pan","doi":"10.1109/INDIN45582.2020.9442160","DOIUrl":null,"url":null,"abstract":"Data-driven intelligent method has shown superior performance in remaining useful life (RUL) prediction. However, the model training is difficult due to the limited degradation data. To address the challenges of small data set, a Sequence Adaptation Adversarial Network (SAAN) is proposed in this paper. SAAN could expand training data with auxiliary set by sequence domain adaption. We verify the proposed method with C-MAPSS dataset. By comparing with the literature methods, results show SAAN could significantly improve the accuracy of RUL prediction under small data set, and also keeps a competitive performance on sequence life prediction.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequence Adaptation Adversarial Network for Remaining Useful Life Prediction Using Small Data Set\",\"authors\":\"Haixin Lv, Jinglong Chen, Tongyang Pan\",\"doi\":\"10.1109/INDIN45582.2020.9442160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven intelligent method has shown superior performance in remaining useful life (RUL) prediction. However, the model training is difficult due to the limited degradation data. To address the challenges of small data set, a Sequence Adaptation Adversarial Network (SAAN) is proposed in this paper. SAAN could expand training data with auxiliary set by sequence domain adaption. We verify the proposed method with C-MAPSS dataset. By comparing with the literature methods, results show SAAN could significantly improve the accuracy of RUL prediction under small data set, and also keeps a competitive performance on sequence life prediction.\",\"PeriodicalId\":185948,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45582.2020.9442160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据驱动的智能方法在剩余使用寿命预测中表现出优异的性能。然而,由于退化数据有限,模型训练困难。为了解决小数据集的挑战,本文提出了一种序列自适应对抗网络(SAAN)。SAAN可以通过序列域自适应扩展辅助集训练数据。我们用C-MAPSS数据集验证了所提出的方法。通过与文献方法的比较,结果表明,SAAN方法可以显著提高小数据集下RUL预测的精度,并且在序列寿命预测方面也具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence Adaptation Adversarial Network for Remaining Useful Life Prediction Using Small Data Set
Data-driven intelligent method has shown superior performance in remaining useful life (RUL) prediction. However, the model training is difficult due to the limited degradation data. To address the challenges of small data set, a Sequence Adaptation Adversarial Network (SAAN) is proposed in this paper. SAAN could expand training data with auxiliary set by sequence domain adaption. We verify the proposed method with C-MAPSS dataset. By comparing with the literature methods, results show SAAN could significantly improve the accuracy of RUL prediction under small data set, and also keeps a competitive performance on sequence life prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信