压缩GPS轨迹数据的算法:一个经验评价

Jonathan Muckell, Jeong-Hyon Hwang, C. Lawson, S. Ravi
{"title":"压缩GPS轨迹数据的算法:一个经验评价","authors":"Jonathan Muckell, Jeong-Hyon Hwang, C. Lawson, S. Ravi","doi":"10.1145/1869790.1869847","DOIUrl":null,"url":null,"abstract":"The massive volumes of trajectory data generated by inexpensive GPS devices have led to difficulties in processing, querying, transmitting and storing such data. To overcome these difficulties, a number of algorithms for compressing trajectory data have been proposed. These algorithms try to reduce the size of trajectory data, while preserving the quality of the information. We present results from a comprehensive empirical evaluation of many compression algorithms including Douglas-Peucker Algorithm, Bellman's Algorithm, STTrace Algorithm and Opening Window Algorithms. Our empirical study uses different types of real-world data such as pedestrian, vehicle and multimodal trajectories. The algorithms are compared using several criteria including execution times and the errors caused by compressing spatio-temporal information, across numerous real-world datasets and various error metrics.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Algorithms for compressing GPS trajectory data: an empirical evaluation\",\"authors\":\"Jonathan Muckell, Jeong-Hyon Hwang, C. Lawson, S. Ravi\",\"doi\":\"10.1145/1869790.1869847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive volumes of trajectory data generated by inexpensive GPS devices have led to difficulties in processing, querying, transmitting and storing such data. To overcome these difficulties, a number of algorithms for compressing trajectory data have been proposed. These algorithms try to reduce the size of trajectory data, while preserving the quality of the information. We present results from a comprehensive empirical evaluation of many compression algorithms including Douglas-Peucker Algorithm, Bellman's Algorithm, STTrace Algorithm and Opening Window Algorithms. Our empirical study uses different types of real-world data such as pedestrian, vehicle and multimodal trajectories. The algorithms are compared using several criteria including execution times and the errors caused by compressing spatio-temporal information, across numerous real-world datasets and various error metrics.\",\"PeriodicalId\":359068,\"journal\":{\"name\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869790.1869847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

廉价的GPS设备产生的大量轨迹数据给处理、查询、传输和存储这些数据带来了困难。为了克服这些困难,人们提出了许多压缩轨迹数据的算法。这些算法试图减少轨迹数据的大小,同时保持信息的质量。我们给出了许多压缩算法的综合经验评估结果,包括Douglas-Peucker算法、Bellman算法、STTrace算法和打开窗口算法。我们的实证研究使用了不同类型的真实世界数据,如行人、车辆和多模式轨迹。这些算法使用多个标准进行比较,包括执行时间和压缩时空信息引起的错误,跨越许多真实世界的数据集和各种错误度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for compressing GPS trajectory data: an empirical evaluation
The massive volumes of trajectory data generated by inexpensive GPS devices have led to difficulties in processing, querying, transmitting and storing such data. To overcome these difficulties, a number of algorithms for compressing trajectory data have been proposed. These algorithms try to reduce the size of trajectory data, while preserving the quality of the information. We present results from a comprehensive empirical evaluation of many compression algorithms including Douglas-Peucker Algorithm, Bellman's Algorithm, STTrace Algorithm and Opening Window Algorithms. Our empirical study uses different types of real-world data such as pedestrian, vehicle and multimodal trajectories. The algorithms are compared using several criteria including execution times and the errors caused by compressing spatio-temporal information, across numerous real-world datasets and various error metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信