基于SVM的上证综合指数短期预测

Xiaoyun Wang, Limin Lin
{"title":"基于SVM的上证综合指数短期预测","authors":"Xiaoyun Wang, Limin Lin","doi":"10.1109/ICSESS.2010.5552390","DOIUrl":null,"url":null,"abstract":"Technical indicators are very important tools in the analysis of securities investment. Closing prices and volume of business are basic index, and they compose many complex technical index. In this paper, we represent the daily closing prices and daily volume of business as input vector, and construct 9 projects according different input vector. After 9 contrast experiments with support vector machines, we find that daily closing prices and daily volume of business have 3 days of time validity in predicting future stock price.","PeriodicalId":264630,"journal":{"name":"2010 IEEE International Conference on Software Engineering and Service Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Short-term prediction of Shanghai composite index based on SVM\",\"authors\":\"Xiaoyun Wang, Limin Lin\",\"doi\":\"10.1109/ICSESS.2010.5552390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technical indicators are very important tools in the analysis of securities investment. Closing prices and volume of business are basic index, and they compose many complex technical index. In this paper, we represent the daily closing prices and daily volume of business as input vector, and construct 9 projects according different input vector. After 9 contrast experiments with support vector machines, we find that daily closing prices and daily volume of business have 3 days of time validity in predicting future stock price.\",\"PeriodicalId\":264630,\"journal\":{\"name\":\"2010 IEEE International Conference on Software Engineering and Service Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Software Engineering and Service Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2010.5552390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Engineering and Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2010.5552390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

技术指标是证券投资分析中非常重要的工具。收盘价和成交量是基本指标,它们构成了许多复杂的技术指标。本文以日收盘价和日业务量为输入向量,根据不同的输入向量构建了9个项目。通过9次支持向量机对比实验,我们发现每日收盘价和每日交易量在预测未来股价方面具有3天的时间有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term prediction of Shanghai composite index based on SVM
Technical indicators are very important tools in the analysis of securities investment. Closing prices and volume of business are basic index, and they compose many complex technical index. In this paper, we represent the daily closing prices and daily volume of business as input vector, and construct 9 projects according different input vector. After 9 contrast experiments with support vector machines, we find that daily closing prices and daily volume of business have 3 days of time validity in predicting future stock price.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信