基于遗传的模糊推理系统参数学习方法

Florin Fagarasan, M. Negoita
{"title":"基于遗传的模糊推理系统参数学习方法","authors":"Florin Fagarasan, M. Negoita","doi":"10.1109/ANNES.1995.499476","DOIUrl":null,"url":null,"abstract":"Fuzzy inference systems (FIS) provide models for approximating continuous, real valued functions. The successful application of fuzzy reasoning models depends on a number of parameters, such as the fuzzy partition of the input/output universes of discourse, that are usually decided in a subjective manner (traditionally, fuzzy rule bases are constructed by knowledge acquisition from human experts). This paper presents a flexible genetic based method for learning the parameters of a FIS from examples such as the subjectivity not to be involved at all. We show that applying this method it is possible to obtain better performances for the FIS or, for the same performances, a less complex structure for the system.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A genetic-based method for learning the parameters of a fuzzy inference system\",\"authors\":\"Florin Fagarasan, M. Negoita\",\"doi\":\"10.1109/ANNES.1995.499476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy inference systems (FIS) provide models for approximating continuous, real valued functions. The successful application of fuzzy reasoning models depends on a number of parameters, such as the fuzzy partition of the input/output universes of discourse, that are usually decided in a subjective manner (traditionally, fuzzy rule bases are constructed by knowledge acquisition from human experts). This paper presents a flexible genetic based method for learning the parameters of a FIS from examples such as the subjectivity not to be involved at all. We show that applying this method it is possible to obtain better performances for the FIS or, for the same performances, a less complex structure for the system.\",\"PeriodicalId\":123427,\"journal\":{\"name\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANNES.1995.499476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

模糊推理系统(FIS)为逼近连续实值函数提供了模型。模糊推理模型的成功应用取决于许多参数,例如话语输入/输出领域的模糊划分,这些参数通常以主观方式决定(传统上,模糊规则库是通过从人类专家那里获取知识来构建的)。本文提出了一种灵活的基于遗传的方法,用于从完全不涉及主观性的例子中学习FIS参数。我们表明,应用这种方法可以获得更好的FIS性能,或者在相同的性能下,系统的结构不那么复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic-based method for learning the parameters of a fuzzy inference system
Fuzzy inference systems (FIS) provide models for approximating continuous, real valued functions. The successful application of fuzzy reasoning models depends on a number of parameters, such as the fuzzy partition of the input/output universes of discourse, that are usually decided in a subjective manner (traditionally, fuzzy rule bases are constructed by knowledge acquisition from human experts). This paper presents a flexible genetic based method for learning the parameters of a FIS from examples such as the subjectivity not to be involved at all. We show that applying this method it is possible to obtain better performances for the FIS or, for the same performances, a less complex structure for the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信