用CLIPPy实现Python中的可扩展数据处理

P. Pirkelbauer, Seth Bromberger, Keita Iwabuchi, R. Pearce
{"title":"用CLIPPy实现Python中的可扩展数据处理","authors":"P. Pirkelbauer, Seth Bromberger, Keita Iwabuchi, R. Pearce","doi":"10.1109/IA354616.2021.00013","DOIUrl":null,"url":null,"abstract":"The Python programming language has become a popular choice for data scientists. While easy to use, the Python language is not well suited to drive data science on large-scale systems. This paper presents a first prototype of CLIPPy (Command line interface plus Python), a user-side class in Python that connects to high-performance computing environments with nonvolatile memory (NVM). CLIPPy queries available executable files and prepares a Python API on the fly. The executables can connect to a backend that executes on a large-scale system. The executables can be implemented in any language, for example in C++. CLIPPy and the executables are loosely coupled and communicate through a JSON based interface. By storing data in NVM, executables can attach and detach to data structures without expensive format conversions. The Underlying Philosophy, Design Challenges, and a Prototype Implementation that Accesses Data Stored in Non-Volatile Memory Will Be Discussed.","PeriodicalId":415158,"journal":{"name":"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Scalable Data Processing in Python with CLIPPy\",\"authors\":\"P. Pirkelbauer, Seth Bromberger, Keita Iwabuchi, R. Pearce\",\"doi\":\"10.1109/IA354616.2021.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Python programming language has become a popular choice for data scientists. While easy to use, the Python language is not well suited to drive data science on large-scale systems. This paper presents a first prototype of CLIPPy (Command line interface plus Python), a user-side class in Python that connects to high-performance computing environments with nonvolatile memory (NVM). CLIPPy queries available executable files and prepares a Python API on the fly. The executables can connect to a backend that executes on a large-scale system. The executables can be implemented in any language, for example in C++. CLIPPy and the executables are loosely coupled and communicate through a JSON based interface. By storing data in NVM, executables can attach and detach to data structures without expensive format conversions. The Underlying Philosophy, Design Challenges, and a Prototype Implementation that Accesses Data Stored in Non-Volatile Memory Will Be Discussed.\",\"PeriodicalId\":415158,\"journal\":{\"name\":\"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IA354616.2021.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IA354616.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Python编程语言已经成为数据科学家的热门选择。虽然易于使用,但Python语言并不适合在大规模系统上驱动数据科学。本文介绍了CLIPPy(命令行接口加Python)的第一个原型,CLIPPy是Python中的一个用户端类,它通过非易失性内存(NVM)连接到高性能计算环境。CLIPPy查询可用的可执行文件,并动态地准备Python API。可执行文件可以连接到在大型系统上执行的后端。可执行文件可以用任何语言实现,例如c++。CLIPPy和可执行文件是松散耦合的,并通过基于JSON的接口进行通信。通过在NVM中存储数据,可执行文件可以附加和分离数据结构,而无需进行昂贵的格式转换。基本原理,设计挑战,以及访问存储在非易失性存储器中的数据的原型实现将被讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Scalable Data Processing in Python with CLIPPy
The Python programming language has become a popular choice for data scientists. While easy to use, the Python language is not well suited to drive data science on large-scale systems. This paper presents a first prototype of CLIPPy (Command line interface plus Python), a user-side class in Python that connects to high-performance computing environments with nonvolatile memory (NVM). CLIPPy queries available executable files and prepares a Python API on the fly. The executables can connect to a backend that executes on a large-scale system. The executables can be implemented in any language, for example in C++. CLIPPy and the executables are loosely coupled and communicate through a JSON based interface. By storing data in NVM, executables can attach and detach to data structures without expensive format conversions. The Underlying Philosophy, Design Challenges, and a Prototype Implementation that Accesses Data Stored in Non-Volatile Memory Will Be Discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信