求解多项式半环上的线性方程

P. Narendran
{"title":"求解多项式半环上的线性方程","authors":"P. Narendran","doi":"10.1109/LICS.1996.561463","DOIUrl":null,"url":null,"abstract":"We consider the problem of solving linear equations over various semirings. In particular, solving of linear equations over polynomial rings with the additional restriction that the solutions must have only non-negative coefficients is shown to be undecidable. Applications to undecidability proofs of several unification problems are illustrated, one of which, unification modulo one associative-commutative function and one endomorphism, has been a long-standing open problem. The problem of solving multiset constraints is also shown to be undecidable.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Solving linear equations over polynomial semirings\",\"authors\":\"P. Narendran\",\"doi\":\"10.1109/LICS.1996.561463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of solving linear equations over various semirings. In particular, solving of linear equations over polynomial rings with the additional restriction that the solutions must have only non-negative coefficients is shown to be undecidable. Applications to undecidability proofs of several unification problems are illustrated, one of which, unification modulo one associative-commutative function and one endomorphism, has been a long-standing open problem. The problem of solving multiset constraints is also shown to be undecidable.\",\"PeriodicalId\":382663,\"journal\":{\"name\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1996.561463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们考虑在各种半环上求解线性方程的问题。特别地,在多项式环上解必须只有非负系数的附加限制下解线性方程被证明是不可判定的。给出了若干统一问题在不可判定性证明中的应用,其中统一模一个结合交换函数和一个自同态是一个长期开放的问题。求解多集约束的问题也被证明是不可确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving linear equations over polynomial semirings
We consider the problem of solving linear equations over various semirings. In particular, solving of linear equations over polynomial rings with the additional restriction that the solutions must have only non-negative coefficients is shown to be undecidable. Applications to undecidability proofs of several unification problems are illustrated, one of which, unification modulo one associative-commutative function and one endomorphism, has been a long-standing open problem. The problem of solving multiset constraints is also shown to be undecidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信