{"title":"应变对碳炔电子输运性质的影响","authors":"G. Eshonqulov, G. Berdiyorov, H. Hamoudi","doi":"10.56017/2181-1318.1030","DOIUrl":null,"url":null,"abstract":"Quantum transport calculations are conducted using density functional theory in combination with Green’s functional formalism to study the effect of external strain on the electronic transport properties of carbyne, 1D carbon allotrope, which has recently received a revival of interest due to its extraordinary mechanical, thermal and electronic properties. The current in the system increases monotonically by increasing the compressive strain, whereas the tensile strain results in the reduction of the charge transport. The obtained results are explained by spatial variations of the electrostatic potential along the carbon chain and nanoscale localization of the charge carriers. These findings can be of practical importance for carbyne-based nanotechnology development.","PeriodicalId":127023,"journal":{"name":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strain effect on the electronic transport properties of carbyne\",\"authors\":\"G. Eshonqulov, G. Berdiyorov, H. Hamoudi\",\"doi\":\"10.56017/2181-1318.1030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum transport calculations are conducted using density functional theory in combination with Green’s functional formalism to study the effect of external strain on the electronic transport properties of carbyne, 1D carbon allotrope, which has recently received a revival of interest due to its extraordinary mechanical, thermal and electronic properties. The current in the system increases monotonically by increasing the compressive strain, whereas the tensile strain results in the reduction of the charge transport. The obtained results are explained by spatial variations of the electrostatic potential along the carbon chain and nanoscale localization of the charge carriers. These findings can be of practical importance for carbyne-based nanotechnology development.\",\"PeriodicalId\":127023,\"journal\":{\"name\":\"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56017/2181-1318.1030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56017/2181-1318.1030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strain effect on the electronic transport properties of carbyne
Quantum transport calculations are conducted using density functional theory in combination with Green’s functional formalism to study the effect of external strain on the electronic transport properties of carbyne, 1D carbon allotrope, which has recently received a revival of interest due to its extraordinary mechanical, thermal and electronic properties. The current in the system increases monotonically by increasing the compressive strain, whereas the tensile strain results in the reduction of the charge transport. The obtained results are explained by spatial variations of the electrostatic potential along the carbon chain and nanoscale localization of the charge carriers. These findings can be of practical importance for carbyne-based nanotechnology development.