基于FPGA的无乘法器优化脉冲神经网络卫星图像分析

H. Zhuang, K. Low, W. Yau
{"title":"基于FPGA的无乘法器优化脉冲神经网络卫星图像分析","authors":"H. Zhuang, K. Low, W. Yau","doi":"10.1109/ICIEA.2008.4582529","DOIUrl":null,"url":null,"abstract":"This paper presents a digital hardware oriented system that uses a genetic algorithm (GA) for optimizing a pattern classifier based on the pulsed neural network (PNN). The scheme avoids the usage of multipiers and dividers, which are the bottlenecks for digital hardware implementation of parallel computations like GA and neural networks. Utilizing the nature of RBF being inherent in the pulsed neural network, the scheme yields very compact computational circuits for implementation on a FPGA chip with massive parallelism that guarantees the speed of the neural and evolutionary computations. The on-chip GA-PNN system is developed for terrain classification of a multi-spectral satellite image. Experimental results show that the performance of the proposed system is comparable to a back propagation (BP) neural network while its training speed exceeds the BP network overwhelmingly.","PeriodicalId":309894,"journal":{"name":"2008 3rd IEEE Conference on Industrial Electronics and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A multiplier-less GA optimized pulsed neural network for satellite image analysis using a FPGA\",\"authors\":\"H. Zhuang, K. Low, W. Yau\",\"doi\":\"10.1109/ICIEA.2008.4582529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a digital hardware oriented system that uses a genetic algorithm (GA) for optimizing a pattern classifier based on the pulsed neural network (PNN). The scheme avoids the usage of multipiers and dividers, which are the bottlenecks for digital hardware implementation of parallel computations like GA and neural networks. Utilizing the nature of RBF being inherent in the pulsed neural network, the scheme yields very compact computational circuits for implementation on a FPGA chip with massive parallelism that guarantees the speed of the neural and evolutionary computations. The on-chip GA-PNN system is developed for terrain classification of a multi-spectral satellite image. Experimental results show that the performance of the proposed system is comparable to a back propagation (BP) neural network while its training speed exceeds the BP network overwhelmingly.\",\"PeriodicalId\":309894,\"journal\":{\"name\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2008.4582529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2008.4582529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于脉冲神经网络(PNN)的遗传算法优化模式分类器的数字硬件系统。该方案避免了乘数和除法的使用,而乘数和除法是遗传算法和神经网络等并行计算的数字硬件实现的瓶颈。利用脉冲神经网络中固有的RBF特性,该方案产生非常紧凑的计算电路,可在FPGA芯片上实现,具有大规模并行性,保证了神经和进化计算的速度。针对多光谱卫星图像的地形分类问题,研制了片上GA-PNN系统。实验结果表明,该系统的性能与BP神经网络相当,而其训练速度则远远超过BP神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiplier-less GA optimized pulsed neural network for satellite image analysis using a FPGA
This paper presents a digital hardware oriented system that uses a genetic algorithm (GA) for optimizing a pattern classifier based on the pulsed neural network (PNN). The scheme avoids the usage of multipiers and dividers, which are the bottlenecks for digital hardware implementation of parallel computations like GA and neural networks. Utilizing the nature of RBF being inherent in the pulsed neural network, the scheme yields very compact computational circuits for implementation on a FPGA chip with massive parallelism that guarantees the speed of the neural and evolutionary computations. The on-chip GA-PNN system is developed for terrain classification of a multi-spectral satellite image. Experimental results show that the performance of the proposed system is comparable to a back propagation (BP) neural network while its training speed exceeds the BP network overwhelmingly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信