基于树的时间模式数据融合方法

V. Radhakrishna, Shadi A. Aljawarneh, P. Kumar, V. Janaki, Aravind Cheruvu
{"title":"基于树的时间模式数据融合方法","authors":"V. Radhakrishna, Shadi A. Aljawarneh, P. Kumar, V. Janaki, Aravind Cheruvu","doi":"10.1145/3330431.3330463","DOIUrl":null,"url":null,"abstract":"Discovering time profiled temporal patterns from time stamped transaction datasets is addressed in our previous research works which includes proposing new support estimation techniques, similarity measures for computing similarity between temporal patterns. This paper proposes a novel approach for discovering temporal pattern by introducing the concept of data fusion w.r.t the temporal pattern tree. The tree is generated for each timeslot and then the trees obtained for individual timeslots are merged or fused to get the overall tree for the entire dataset. The concept of tree based data fusion helps to prune elements efficiently and well ahead during pattern mining process. A pruning function is also introduced in this paper to prune invalid temporal patterns.","PeriodicalId":196960,"journal":{"name":"Proceedings of the 5th International Conference on Engineering and MIS","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Tree based data fusion approach for mining temporal patterns\",\"authors\":\"V. Radhakrishna, Shadi A. Aljawarneh, P. Kumar, V. Janaki, Aravind Cheruvu\",\"doi\":\"10.1145/3330431.3330463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering time profiled temporal patterns from time stamped transaction datasets is addressed in our previous research works which includes proposing new support estimation techniques, similarity measures for computing similarity between temporal patterns. This paper proposes a novel approach for discovering temporal pattern by introducing the concept of data fusion w.r.t the temporal pattern tree. The tree is generated for each timeslot and then the trees obtained for individual timeslots are merged or fused to get the overall tree for the entire dataset. The concept of tree based data fusion helps to prune elements efficiently and well ahead during pattern mining process. A pruning function is also introduced in this paper to prune invalid temporal patterns.\",\"PeriodicalId\":196960,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Engineering and MIS\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Engineering and MIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3330431.3330463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Engineering and MIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330431.3330463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

从时间戳的事务数据集中发现时间分布的时间模式在我们之前的研究工作中得到了解决,其中包括提出新的支持估计技术,用于计算时间模式之间相似性的相似度量。本文在时序模式树的基础上引入数据融合的概念,提出了一种新的时序模式发现方法。首先为每个时隙生成树,然后将每个时隙得到的树进行合并或融合,得到整个数据集的整体树。基于树的数据融合概念有助于在模式挖掘过程中高效、提前地修剪元素。本文还引入了一个剪枝函数来剪枝无效的时间模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree based data fusion approach for mining temporal patterns
Discovering time profiled temporal patterns from time stamped transaction datasets is addressed in our previous research works which includes proposing new support estimation techniques, similarity measures for computing similarity between temporal patterns. This paper proposes a novel approach for discovering temporal pattern by introducing the concept of data fusion w.r.t the temporal pattern tree. The tree is generated for each timeslot and then the trees obtained for individual timeslots are merged or fused to get the overall tree for the entire dataset. The concept of tree based data fusion helps to prune elements efficiently and well ahead during pattern mining process. A pruning function is also introduced in this paper to prune invalid temporal patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信