使用Kullback-Leibler标准的潜变量降维及其在预测抗抑郁药物治疗反应中的应用

A. Khodayari-Rostamabad, J. Reilly, G. Hasey
{"title":"使用Kullback-Leibler标准的潜变量降维及其在预测抗抑郁药物治疗反应中的应用","authors":"A. Khodayari-Rostamabad, J. Reilly, G. Hasey","doi":"10.1109/PRNI.2013.46","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for dimensionality reduction of high-dimensional input data in a binary classification problem. The method is based on selecting a few latent variables that maximize the Kullback-Leibler (KL) distance between the two class distributions, under the assumption that these distributions are multivariate Gaussian. Numerical performance is demonstrated by solving the challenging problem of classifying patients with major depressive disorder (MDD) into responders vs. non-responders to an anti-depressant treatment using pre-treatment resting electroencephalography (EEG) data. The extracted feature set measures consistent connectivity and includes the magnitude coherence features among all electrode pairs in a 3Hz to 30Hz bandwidth with 1Hz resolution. An overall 86% prediction performance indicates the effectiveness of the KLDR method in this application. This performance level was found to exceed that of other dimensionality reduction methods, namely the unsupervised principal component (PCA) and the supervised Fisher discriminant analysis (FDA) methods.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Variable Dimensionality Reduction Using a Kullback-Leibler Criterion and Its Application to Predict Antidepressant Treatment Response\",\"authors\":\"A. Khodayari-Rostamabad, J. Reilly, G. Hasey\",\"doi\":\"10.1109/PRNI.2013.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for dimensionality reduction of high-dimensional input data in a binary classification problem. The method is based on selecting a few latent variables that maximize the Kullback-Leibler (KL) distance between the two class distributions, under the assumption that these distributions are multivariate Gaussian. Numerical performance is demonstrated by solving the challenging problem of classifying patients with major depressive disorder (MDD) into responders vs. non-responders to an anti-depressant treatment using pre-treatment resting electroencephalography (EEG) data. The extracted feature set measures consistent connectivity and includes the magnitude coherence features among all electrode pairs in a 3Hz to 30Hz bandwidth with 1Hz resolution. An overall 86% prediction performance indicates the effectiveness of the KLDR method in this application. This performance level was found to exceed that of other dimensionality reduction methods, namely the unsupervised principal component (PCA) and the supervised Fisher discriminant analysis (FDA) methods.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种对二元分类问题中高维输入数据进行降维的方法。该方法基于在假设这些分布是多元高斯分布的情况下,选择一些使两类分布之间的Kullback-Leibler (KL)距离最大化的潜在变量。通过使用治疗前静息脑电图(EEG)数据解决将重度抑郁症(MDD)患者分类为抗抑郁治疗反应者和无反应者的挑战性问题,证明了数值性能。提取的特征集测量一致的连通性,包括所有电极对在3Hz至30Hz带宽和1Hz分辨率之间的幅度相干性特征。总体86%的预测性能表明KLDR方法在该应用程序中的有效性。该性能水平优于其他降维方法,即无监督主成分(PCA)和监督Fisher判别分析(FDA)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Variable Dimensionality Reduction Using a Kullback-Leibler Criterion and Its Application to Predict Antidepressant Treatment Response
In this paper, we propose a method for dimensionality reduction of high-dimensional input data in a binary classification problem. The method is based on selecting a few latent variables that maximize the Kullback-Leibler (KL) distance between the two class distributions, under the assumption that these distributions are multivariate Gaussian. Numerical performance is demonstrated by solving the challenging problem of classifying patients with major depressive disorder (MDD) into responders vs. non-responders to an anti-depressant treatment using pre-treatment resting electroencephalography (EEG) data. The extracted feature set measures consistent connectivity and includes the magnitude coherence features among all electrode pairs in a 3Hz to 30Hz bandwidth with 1Hz resolution. An overall 86% prediction performance indicates the effectiveness of the KLDR method in this application. This performance level was found to exceed that of other dimensionality reduction methods, namely the unsupervised principal component (PCA) and the supervised Fisher discriminant analysis (FDA) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信