David Fernández-Amorós, R. Heradio, Christoph Mayr-Dorn, Alexander Egyed
{"title":"高度可配置系统的可扩展采样:生成Linux内核的随机实例","authors":"David Fernández-Amorós, R. Heradio, Christoph Mayr-Dorn, Alexander Egyed","doi":"10.1145/3551349.3556899","DOIUrl":null,"url":null,"abstract":"Software systems are becoming increasingly configurable. A paradigmatic example is the Linux kernel, which can be adjusted for a tremendous variety of hardware devices, from mobile phones to supercomputers, thanks to the thousands of configurable features it supports. In principle, many relevant problems on configurable systems, such as completing a partial configuration to get the system instance that consumes the least energy or optimizes any other quality attribute, could be solved through exhaustive analysis of all configurations. However, configuration spaces are typically colossal and cannot be entirely computed in practice. Alternatively, configuration samples can be analyzed to approximate the answers. Generating those samples is not trivial since features usually have inter-dependencies that constrain the configuration space. Therefore, getting a single valid configuration by chance is extremely unlikely. As a result, advanced samplers are being proposed to generate random samples at a reasonable computational cost. However, to date, no sampler can deal with highly configurable complex systems, such as the Linux kernel. This paper proposes a new sampler that does scale for those systems, based on an original theoretical approach called extensible logic groups. The sampler is compared against five other approaches. Results show our tool to be the fastest and most scalable one.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel\",\"authors\":\"David Fernández-Amorós, R. Heradio, Christoph Mayr-Dorn, Alexander Egyed\",\"doi\":\"10.1145/3551349.3556899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software systems are becoming increasingly configurable. A paradigmatic example is the Linux kernel, which can be adjusted for a tremendous variety of hardware devices, from mobile phones to supercomputers, thanks to the thousands of configurable features it supports. In principle, many relevant problems on configurable systems, such as completing a partial configuration to get the system instance that consumes the least energy or optimizes any other quality attribute, could be solved through exhaustive analysis of all configurations. However, configuration spaces are typically colossal and cannot be entirely computed in practice. Alternatively, configuration samples can be analyzed to approximate the answers. Generating those samples is not trivial since features usually have inter-dependencies that constrain the configuration space. Therefore, getting a single valid configuration by chance is extremely unlikely. As a result, advanced samplers are being proposed to generate random samples at a reasonable computational cost. However, to date, no sampler can deal with highly configurable complex systems, such as the Linux kernel. This paper proposes a new sampler that does scale for those systems, based on an original theoretical approach called extensible logic groups. The sampler is compared against five other approaches. Results show our tool to be the fastest and most scalable one.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3556899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3556899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel
Software systems are becoming increasingly configurable. A paradigmatic example is the Linux kernel, which can be adjusted for a tremendous variety of hardware devices, from mobile phones to supercomputers, thanks to the thousands of configurable features it supports. In principle, many relevant problems on configurable systems, such as completing a partial configuration to get the system instance that consumes the least energy or optimizes any other quality attribute, could be solved through exhaustive analysis of all configurations. However, configuration spaces are typically colossal and cannot be entirely computed in practice. Alternatively, configuration samples can be analyzed to approximate the answers. Generating those samples is not trivial since features usually have inter-dependencies that constrain the configuration space. Therefore, getting a single valid configuration by chance is extremely unlikely. As a result, advanced samplers are being proposed to generate random samples at a reasonable computational cost. However, to date, no sampler can deal with highly configurable complex systems, such as the Linux kernel. This paper proposes a new sampler that does scale for those systems, based on an original theoretical approach called extensible logic groups. The sampler is compared against five other approaches. Results show our tool to be the fastest and most scalable one.