{"title":"米级望远镜高对比度自适应光学系统","authors":"M. Mateen, O. Reynolds, M. Eickhoff","doi":"10.1117/12.2563214","DOIUrl":null,"url":null,"abstract":"This paper provides a status update on the Natural Guidestar (NGS) Adaptive Optics (AO)\nsystem being built for Castor, the meter class telescope at the Starfire Optical Range. We present a radiometric case study for a range of variable parameters such as source brightness, number of Shack-Hartmann sub-apertures, AO and Track loop frame rate and bandwidth. We gauge system performance by contrast and adapt the error budget\nto allow detection of a dim object near a bright star. We present wave band splits between the different AO components such as track sensor, wavefront sensor, scoring camera, and science camera. We show the different configurations that allow to switch between dim object and bright object tracking. The opto-mechanical design of the AO system is\nalso presented.","PeriodicalId":231205,"journal":{"name":"Adaptive Optics Systems VII","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High contrast adaptive optics system for meter class telescopes\",\"authors\":\"M. Mateen, O. Reynolds, M. Eickhoff\",\"doi\":\"10.1117/12.2563214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a status update on the Natural Guidestar (NGS) Adaptive Optics (AO)\\nsystem being built for Castor, the meter class telescope at the Starfire Optical Range. We present a radiometric case study for a range of variable parameters such as source brightness, number of Shack-Hartmann sub-apertures, AO and Track loop frame rate and bandwidth. We gauge system performance by contrast and adapt the error budget\\nto allow detection of a dim object near a bright star. We present wave band splits between the different AO components such as track sensor, wavefront sensor, scoring camera, and science camera. We show the different configurations that allow to switch between dim object and bright object tracking. The opto-mechanical design of the AO system is\\nalso presented.\",\"PeriodicalId\":231205,\"journal\":{\"name\":\"Adaptive Optics Systems VII\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Optics Systems VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2563214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Optics Systems VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2563214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High contrast adaptive optics system for meter class telescopes
This paper provides a status update on the Natural Guidestar (NGS) Adaptive Optics (AO)
system being built for Castor, the meter class telescope at the Starfire Optical Range. We present a radiometric case study for a range of variable parameters such as source brightness, number of Shack-Hartmann sub-apertures, AO and Track loop frame rate and bandwidth. We gauge system performance by contrast and adapt the error budget
to allow detection of a dim object near a bright star. We present wave band splits between the different AO components such as track sensor, wavefront sensor, scoring camera, and science camera. We show the different configurations that allow to switch between dim object and bright object tracking. The opto-mechanical design of the AO system is
also presented.