手写字符识别非线性变形模型中的局部上下文

Daniel Keysers, C. Gollan, H. Ney
{"title":"手写字符识别非线性变形模型中的局部上下文","authors":"Daniel Keysers, C. Gollan, H. Ney","doi":"10.1109/ICPR.2004.1333823","DOIUrl":null,"url":null,"abstract":"We evaluate different two-dimensional non-linear deformation models for handwritten character recognition. Starting from a true two-dimensional model, we derive pseudo-two-dimensional and zero-order deformation models. Experiments show that it is most important to include suitable representations of the local image context of each pixel to increase performance. With these methods, we achieve very competitive results across five different tasks, in particular 0.5% error rate on the MNIST task.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Local context in non-linear deformation models for handwritten character recognition\",\"authors\":\"Daniel Keysers, C. Gollan, H. Ney\",\"doi\":\"10.1109/ICPR.2004.1333823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate different two-dimensional non-linear deformation models for handwritten character recognition. Starting from a true two-dimensional model, we derive pseudo-two-dimensional and zero-order deformation models. Experiments show that it is most important to include suitable representations of the local image context of each pixel to increase performance. With these methods, we achieve very competitive results across five different tasks, in particular 0.5% error rate on the MNIST task.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1333823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1333823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们评估了不同的二维非线性变形模型用于手写字符识别。从真二维模型出发,推导出伪二维和零阶变形模型。实验表明,为了提高性能,最重要的是包含每个像素的局部图像上下文的合适表示。使用这些方法,我们在五个不同的任务中获得了非常有竞争力的结果,特别是在MNIST任务上的错误率为0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local context in non-linear deformation models for handwritten character recognition
We evaluate different two-dimensional non-linear deformation models for handwritten character recognition. Starting from a true two-dimensional model, we derive pseudo-two-dimensional and zero-order deformation models. Experiments show that it is most important to include suitable representations of the local image context of each pixel to increase performance. With these methods, we achieve very competitive results across five different tasks, in particular 0.5% error rate on the MNIST task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信