{"title":"手写字符识别非线性变形模型中的局部上下文","authors":"Daniel Keysers, C. Gollan, H. Ney","doi":"10.1109/ICPR.2004.1333823","DOIUrl":null,"url":null,"abstract":"We evaluate different two-dimensional non-linear deformation models for handwritten character recognition. Starting from a true two-dimensional model, we derive pseudo-two-dimensional and zero-order deformation models. Experiments show that it is most important to include suitable representations of the local image context of each pixel to increase performance. With these methods, we achieve very competitive results across five different tasks, in particular 0.5% error rate on the MNIST task.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Local context in non-linear deformation models for handwritten character recognition\",\"authors\":\"Daniel Keysers, C. Gollan, H. Ney\",\"doi\":\"10.1109/ICPR.2004.1333823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate different two-dimensional non-linear deformation models for handwritten character recognition. Starting from a true two-dimensional model, we derive pseudo-two-dimensional and zero-order deformation models. Experiments show that it is most important to include suitable representations of the local image context of each pixel to increase performance. With these methods, we achieve very competitive results across five different tasks, in particular 0.5% error rate on the MNIST task.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1333823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1333823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local context in non-linear deformation models for handwritten character recognition
We evaluate different two-dimensional non-linear deformation models for handwritten character recognition. Starting from a true two-dimensional model, we derive pseudo-two-dimensional and zero-order deformation models. Experiments show that it is most important to include suitable representations of the local image context of each pixel to increase performance. With these methods, we achieve very competitive results across five different tasks, in particular 0.5% error rate on the MNIST task.