无机混合卤化物钙钛矿的机器学习带隙

J. Stanley, A. Gagliardi
{"title":"无机混合卤化物钙钛矿的机器学习带隙","authors":"J. Stanley, A. Gagliardi","doi":"10.1109/NANO.2018.8626420","DOIUrl":null,"url":null,"abstract":"The identification of suitable lead-free perovskites is crucial for their envisioned applications in photovoltaics. Efficient and accurate vetting of these compounds for a range of properties has recently been accomplished in high-throughput studies by use of statistical learning methods. Here we demonstrate how one such property, the fundamental bandgap, can be predicted for a family of inorganic mixed halide perovskites using fingerprints based solely on the atomic arrangement of the unit cell. Important trends and experimentally accessible factors controlling this property are thereby illuminated in a chemically intuitive manner.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Bandgaps of Inorganic Mixed Halide Perovskites\",\"authors\":\"J. Stanley, A. Gagliardi\",\"doi\":\"10.1109/NANO.2018.8626420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of suitable lead-free perovskites is crucial for their envisioned applications in photovoltaics. Efficient and accurate vetting of these compounds for a range of properties has recently been accomplished in high-throughput studies by use of statistical learning methods. Here we demonstrate how one such property, the fundamental bandgap, can be predicted for a family of inorganic mixed halide perovskites using fingerprints based solely on the atomic arrangement of the unit cell. Important trends and experimentally accessible factors controlling this property are thereby illuminated in a chemically intuitive manner.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

确定合适的无铅钙钛矿对于其在光伏电池中的预期应用至关重要。最近,利用统计学习方法在高通量研究中完成了对这些化合物一系列性质的有效和准确的审查。在这里,我们展示了如何使用指纹仅基于单元电池的原子排列来预测无机混合卤化物钙钛矿家族的基本带隙。因此,以化学直观的方式阐明了控制这一性质的重要趋势和实验上可获得的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Bandgaps of Inorganic Mixed Halide Perovskites
The identification of suitable lead-free perovskites is crucial for their envisioned applications in photovoltaics. Efficient and accurate vetting of these compounds for a range of properties has recently been accomplished in high-throughput studies by use of statistical learning methods. Here we demonstrate how one such property, the fundamental bandgap, can be predicted for a family of inorganic mixed halide perovskites using fingerprints based solely on the atomic arrangement of the unit cell. Important trends and experimentally accessible factors controlling this property are thereby illuminated in a chemically intuitive manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信