{"title":"基于混沌搜索技术的免疫量子进化算法全局优化","authors":"Xiaoming You, Sheng Liu, Xiankun Sun","doi":"10.1109/ICINIS.2008.135","DOIUrl":null,"url":null,"abstract":"A novel immune quantum evolutionary algorithm based on chaotic searching for global optimization (CRIQEA) is proposed. Firstly, by niching methods population is divided into subpopulations automatically. Secondly, by using immune and catastrophe operator each subpopulation can obtain optimal solutions. Because of the quantum evolutionary algorithm with intrinsic parallelism it can maintain quite nicely the population diversity than the classical evolutionary algorithm; because of the immune operator and real representation for the chromosome it can accelerate the convergence speed. The chaotic searching technique for improving the performance of CRIQEA has been described; catastrophe operator based on chaotic dynamic systems is capable of escaping from local optima. Simulation results demonstrate the superiority of CRIQEA in this paper.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Immune Quantum Evolutionary Algorithm Based on Chaotic Searching Technique for Global Optimization\",\"authors\":\"Xiaoming You, Sheng Liu, Xiankun Sun\",\"doi\":\"10.1109/ICINIS.2008.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel immune quantum evolutionary algorithm based on chaotic searching for global optimization (CRIQEA) is proposed. Firstly, by niching methods population is divided into subpopulations automatically. Secondly, by using immune and catastrophe operator each subpopulation can obtain optimal solutions. Because of the quantum evolutionary algorithm with intrinsic parallelism it can maintain quite nicely the population diversity than the classical evolutionary algorithm; because of the immune operator and real representation for the chromosome it can accelerate the convergence speed. The chaotic searching technique for improving the performance of CRIQEA has been described; catastrophe operator based on chaotic dynamic systems is capable of escaping from local optima. Simulation results demonstrate the superiority of CRIQEA in this paper.\",\"PeriodicalId\":185739,\"journal\":{\"name\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINIS.2008.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Immune Quantum Evolutionary Algorithm Based on Chaotic Searching Technique for Global Optimization
A novel immune quantum evolutionary algorithm based on chaotic searching for global optimization (CRIQEA) is proposed. Firstly, by niching methods population is divided into subpopulations automatically. Secondly, by using immune and catastrophe operator each subpopulation can obtain optimal solutions. Because of the quantum evolutionary algorithm with intrinsic parallelism it can maintain quite nicely the population diversity than the classical evolutionary algorithm; because of the immune operator and real representation for the chromosome it can accelerate the convergence speed. The chaotic searching technique for improving the performance of CRIQEA has been described; catastrophe operator based on chaotic dynamic systems is capable of escaping from local optima. Simulation results demonstrate the superiority of CRIQEA in this paper.