零镜头图像到图像翻译

Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, Jun-Yan Zhu
{"title":"零镜头图像到图像翻译","authors":"Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, Jun-Yan Zhu","doi":"10.1145/3588432.3591513","DOIUrl":null,"url":null,"abstract":"Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse, high-quality images. However, directly applying these models for real image editing remains challenging for two reasons. First, it is hard for users to craft a perfect text prompt depicting every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we introduce pix2pix-zero, an image-to-image translation method that can preserve the original image’s content without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the content structure, we propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. Finally, to enable interactive editing, we distill the diffusion model into a fast conditional GAN. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model.","PeriodicalId":280036,"journal":{"name":"ACM SIGGRAPH 2023 Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Zero-shot Image-to-Image Translation\",\"authors\":\"Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, Jun-Yan Zhu\",\"doi\":\"10.1145/3588432.3591513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse, high-quality images. However, directly applying these models for real image editing remains challenging for two reasons. First, it is hard for users to craft a perfect text prompt depicting every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we introduce pix2pix-zero, an image-to-image translation method that can preserve the original image’s content without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the content structure, we propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. Finally, to enable interactive editing, we distill the diffusion model into a fast conditional GAN. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model.\",\"PeriodicalId\":280036,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Conference Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588432.3591513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588432.3591513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

大规模的文本到图像生成模型已经显示出其合成各种高质量图像的卓越能力。然而,由于两个原因,直接将这些模型应用于真实图像编辑仍然具有挑战性。首先,用户很难制作一个完美的文本提示,描述输入图像中的每个视觉细节。其次,虽然现有模型可以在某些区域引入所需的更改,但它们通常会极大地改变输入内容,并在不需要的区域引入意想不到的更改。在这项工作中,我们引入了pix2pix-zero,这是一种图像到图像的翻译方法,可以在不需要手动提示的情况下保留原始图像的内容。我们首先在文本嵌入空间中自动发现反映所需编辑的编辑方向。为了保留内容结构,我们提出了交叉注意引导,其目的是在整个扩散过程中保留输入图像的交叉注意图。最后,为了实现交互式编辑,我们将扩散模型提取为快速条件GAN。我们进行了大量的实验,并表明我们的方法优于现有的和并发的真实和合成图像编辑工作。此外,我们的方法不需要对这些编辑进行额外的训练,可以直接使用现有的预训练的文本到图像扩散模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-shot Image-to-Image Translation
Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse, high-quality images. However, directly applying these models for real image editing remains challenging for two reasons. First, it is hard for users to craft a perfect text prompt depicting every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we introduce pix2pix-zero, an image-to-image translation method that can preserve the original image’s content without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the content structure, we propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. Finally, to enable interactive editing, we distill the diffusion model into a fast conditional GAN. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信