4阶全列代数的代数结构

Joseph Bayara, S. Coulibaly
{"title":"4阶全列代数的代数结构","authors":"Joseph Bayara, S. Coulibaly","doi":"10.56947/gjom.v15i1.1386","DOIUrl":null,"url":null,"abstract":"In this paper, we study plenary train algebras of rank 4 admitting an idempotent. We obtain the Peirce decomposition of these algebras relative to an idempotent and the product of the associated Peirce components. The effect of changing an idempotent is discussed under the e-stability hypothesis. We show that a back-crossing algebra is a plenary train algebra of rank 4 if and only if it is a principal train algebra of rank 4. Finally, we study the particular case of monogenic back-crossing train algebras.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic structure of plenary train algebras of rank 4\",\"authors\":\"Joseph Bayara, S. Coulibaly\",\"doi\":\"10.56947/gjom.v15i1.1386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study plenary train algebras of rank 4 admitting an idempotent. We obtain the Peirce decomposition of these algebras relative to an idempotent and the product of the associated Peirce components. The effect of changing an idempotent is discussed under the e-stability hypothesis. We show that a back-crossing algebra is a plenary train algebra of rank 4 if and only if it is a principal train algebra of rank 4. Finally, we study the particular case of monogenic back-crossing train algebras.\",\"PeriodicalId\":421614,\"journal\":{\"name\":\"Gulf Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gulf Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/gjom.v15i1.1386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v15i1.1386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了承认幂等的4阶全体训练代数。我们得到了这些代数相对于幂等的Peirce分解和相关Peirce分量的乘积。在e-稳定性假设下讨论了幂等变换的影响。证明一个逆交代数是秩4的全列代数当且仅当它是秩4的主列代数。最后,我们研究了单基因回交列代数的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic structure of plenary train algebras of rank 4
In this paper, we study plenary train algebras of rank 4 admitting an idempotent. We obtain the Peirce decomposition of these algebras relative to an idempotent and the product of the associated Peirce components. The effect of changing an idempotent is discussed under the e-stability hypothesis. We show that a back-crossing algebra is a plenary train algebra of rank 4 if and only if it is a principal train algebra of rank 4. Finally, we study the particular case of monogenic back-crossing train algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信