二次谐波产生中混沌和量子噪声的半经典极限

M. Dörfle, R. Graham
{"title":"二次谐波产生中混沌和量子噪声的半经典极限","authors":"M. Dörfle, R. Graham","doi":"10.1364/idlnos.1985.thc6","DOIUrl":null,"url":null,"abstract":"Second harmonic generation and subharmonic generation in a cavity are described by the usual master equation (1) for the statistical operator of the system of two modes (fundamental and second harmonic). The master equation is equivalent to a partial differential equation for the Wigner function which is a generalized Fokker-Planck equation involving partial derivatives of the first, second and third order (2). In the semi-classical limit the third order derivatives are negligible and the Wigner distribution satisfies the Fokker-Planck equation equivalent to the Langevin equation with the formally classical Gaussian white noise ξ1, ξ2 with the only non-vanishing correlation coefficients β1, β2 are the mode amplitudes (normalized to photon numbers), g is the coupling constant, Δ1, 2 the frequency mismatch, x is the damping rate, Fp the amplitude of the pump field.","PeriodicalId":262701,"journal":{"name":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-classical Limit of Chaos and Quantum Noise in Second Harmonic Generation\",\"authors\":\"M. Dörfle, R. Graham\",\"doi\":\"10.1364/idlnos.1985.thc6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second harmonic generation and subharmonic generation in a cavity are described by the usual master equation (1) for the statistical operator of the system of two modes (fundamental and second harmonic). The master equation is equivalent to a partial differential equation for the Wigner function which is a generalized Fokker-Planck equation involving partial derivatives of the first, second and third order (2). In the semi-classical limit the third order derivatives are negligible and the Wigner distribution satisfies the Fokker-Planck equation equivalent to the Langevin equation with the formally classical Gaussian white noise ξ1, ξ2 with the only non-vanishing correlation coefficients β1, β2 are the mode amplitudes (normalized to photon numbers), g is the coupling constant, Δ1, 2 the frequency mismatch, x is the damping rate, Fp the amplitude of the pump field.\",\"PeriodicalId\":262701,\"journal\":{\"name\":\"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/idlnos.1985.thc6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/idlnos.1985.thc6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于双模(基频和二次谐波)系统的统计算符,用通常的主方程(1)来描述腔内二次谐波和次谐波的产生。主方程等价于Wigner函数的偏微分方程,Wigner函数是一个广义的Fokker-Planck方程,涉及一阶、二阶和三阶的偏导数(2)。在半经典极限下,三阶导数可以忽略不计,Wigner分布满足Fokker-Planck方程,等价于Langevin方程,具有形式经典的高斯白噪声ξ1, ξ2,只有不消失的相关系数β1,β2为模振幅(归一化为光子数),g为耦合常数,Δ1, 2为频率失配,x为阻尼率,Fp为泵浦场振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-classical Limit of Chaos and Quantum Noise in Second Harmonic Generation
Second harmonic generation and subharmonic generation in a cavity are described by the usual master equation (1) for the statistical operator of the system of two modes (fundamental and second harmonic). The master equation is equivalent to a partial differential equation for the Wigner function which is a generalized Fokker-Planck equation involving partial derivatives of the first, second and third order (2). In the semi-classical limit the third order derivatives are negligible and the Wigner distribution satisfies the Fokker-Planck equation equivalent to the Langevin equation with the formally classical Gaussian white noise ξ1, ξ2 with the only non-vanishing correlation coefficients β1, β2 are the mode amplitudes (normalized to photon numbers), g is the coupling constant, Δ1, 2 the frequency mismatch, x is the damping rate, Fp the amplitude of the pump field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信