R. Aleliunas, R. Karp, R. Lipton, L. Lovász, C. Rackoff
{"title":"随机漫步,普遍遍历序列,以及迷宫问题的复杂性","authors":"R. Aleliunas, R. Karp, R. Lipton, L. Lovász, C. Rackoff","doi":"10.1109/SFCS.1979.34","DOIUrl":null,"url":null,"abstract":"It is well known that the reachability problem for directed graphs is logspace-complete for the complexity class NSPACE(log n) , and thus holds the key to the open question of whether DSPACE(logn)= NSPACE(logn) ([3,4,5,6]). Here as usual OSPACE(logn) is the class of languages that are accepted in logn space by deterministic Turing Ma chi nes, wh i 1eNSPACE( log n) i s the c1ass 0 f 1anguages that are accepted in log n space by nondeterministic ones. The reachability problem for undirected graphs has also been considered ([5]), but it has remained an open question whether undirected graph reachability is logspace-complete for NSPACE(logn). Here we derive results suggesting that the undirected reachability problem is structurally different from, and easier than, the directed version. These results are an affirmative answer to a question of S. Cook.","PeriodicalId":311166,"journal":{"name":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"690","resultStr":"{\"title\":\"Random walks, universal traversal sequences, and the complexity of maze problems\",\"authors\":\"R. Aleliunas, R. Karp, R. Lipton, L. Lovász, C. Rackoff\",\"doi\":\"10.1109/SFCS.1979.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the reachability problem for directed graphs is logspace-complete for the complexity class NSPACE(log n) , and thus holds the key to the open question of whether DSPACE(logn)= NSPACE(logn) ([3,4,5,6]). Here as usual OSPACE(logn) is the class of languages that are accepted in logn space by deterministic Turing Ma chi nes, wh i 1eNSPACE( log n) i s the c1ass 0 f 1anguages that are accepted in log n space by nondeterministic ones. The reachability problem for undirected graphs has also been considered ([5]), but it has remained an open question whether undirected graph reachability is logspace-complete for NSPACE(logn). Here we derive results suggesting that the undirected reachability problem is structurally different from, and easier than, the directed version. These results are an affirmative answer to a question of S. Cook.\",\"PeriodicalId\":311166,\"journal\":{\"name\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"690\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1979.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1979.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random walks, universal traversal sequences, and the complexity of maze problems
It is well known that the reachability problem for directed graphs is logspace-complete for the complexity class NSPACE(log n) , and thus holds the key to the open question of whether DSPACE(logn)= NSPACE(logn) ([3,4,5,6]). Here as usual OSPACE(logn) is the class of languages that are accepted in logn space by deterministic Turing Ma chi nes, wh i 1eNSPACE( log n) i s the c1ass 0 f 1anguages that are accepted in log n space by nondeterministic ones. The reachability problem for undirected graphs has also been considered ([5]), but it has remained an open question whether undirected graph reachability is logspace-complete for NSPACE(logn). Here we derive results suggesting that the undirected reachability problem is structurally different from, and easier than, the directed version. These results are an affirmative answer to a question of S. Cook.