未来可持续工程的绿色摩擦学

M. Kalin, M. Polajnar, M. Kus, F. Majdič
{"title":"未来可持续工程的绿色摩擦学","authors":"M. Kalin, M. Polajnar, M. Kus, F. Majdič","doi":"10.5545/sv-jme.2019.6406","DOIUrl":null,"url":null,"abstract":"Environmental awareness and especially the legislation that requires the reduction of polluting emissions are strong driving forces toward more sustainable engineering and greener solutions in the design, use and overall life span of machinery. However, providing novel concepts that will exclude non-environmentally adapted, but over many years developed and optimized solutions, is not an easy task. It clearly requires time if the same level of technical performance is to be maintained. Green tribology is one of the fields that has been closely involved in these actives in the past two decades. The research and use of tribology science and technology toward green and sustainable engineering include natural material usage, lower energy consumption, reducing natural oil resources, reducing pollution and emissions, fewer maintenance requirements and thus reduced machinery-investment cycles. This report is not an attempt to cover all the existing concepts, attempts or literature available in the field, but mainly those efforts that our group has been working on over the past 20 years, which mainly includes novel green-lubrication concepts that come from exploring and exploiting surface engineering through the use of diamond-like-carbon (DLC) coatings.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Green Tribology for the Sustainable Engineering of the Future\",\"authors\":\"M. Kalin, M. Polajnar, M. Kus, F. Majdič\",\"doi\":\"10.5545/sv-jme.2019.6406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental awareness and especially the legislation that requires the reduction of polluting emissions are strong driving forces toward more sustainable engineering and greener solutions in the design, use and overall life span of machinery. However, providing novel concepts that will exclude non-environmentally adapted, but over many years developed and optimized solutions, is not an easy task. It clearly requires time if the same level of technical performance is to be maintained. Green tribology is one of the fields that has been closely involved in these actives in the past two decades. The research and use of tribology science and technology toward green and sustainable engineering include natural material usage, lower energy consumption, reducing natural oil resources, reducing pollution and emissions, fewer maintenance requirements and thus reduced machinery-investment cycles. This report is not an attempt to cover all the existing concepts, attempts or literature available in the field, but mainly those efforts that our group has been working on over the past 20 years, which mainly includes novel green-lubrication concepts that come from exploring and exploiting surface engineering through the use of diamond-like-carbon (DLC) coatings.\",\"PeriodicalId\":135907,\"journal\":{\"name\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2019.6406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2019.6406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

环保意识,特别是要求减少污染排放的立法,是在设计、使用和机械整体寿命方面实现更可持续的工程和更环保解决方案的强大推动力。然而,提供新颖的概念,排除非环境适应性,但经过多年开发和优化的解决方案,并不是一件容易的事情。如果要保持相同的技术性能水平,显然需要时间。绿色摩擦学是近二十年来密切参与这些活动的领域之一。摩擦学科学技术在绿色可持续工程中的研究和应用包括使用天然材料、降低能源消耗、减少天然石油资源、减少污染和排放、减少维护要求,从而缩短机械投资周期。本报告并不试图涵盖该领域所有现有的概念、尝试或文献,但主要是我们小组在过去20年中所做的努力,其中主要包括通过使用类金刚石(DLC)涂层探索和开发表面工程的新型绿色润滑概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Tribology for the Sustainable Engineering of the Future
Environmental awareness and especially the legislation that requires the reduction of polluting emissions are strong driving forces toward more sustainable engineering and greener solutions in the design, use and overall life span of machinery. However, providing novel concepts that will exclude non-environmentally adapted, but over many years developed and optimized solutions, is not an easy task. It clearly requires time if the same level of technical performance is to be maintained. Green tribology is one of the fields that has been closely involved in these actives in the past two decades. The research and use of tribology science and technology toward green and sustainable engineering include natural material usage, lower energy consumption, reducing natural oil resources, reducing pollution and emissions, fewer maintenance requirements and thus reduced machinery-investment cycles. This report is not an attempt to cover all the existing concepts, attempts or literature available in the field, but mainly those efforts that our group has been working on over the past 20 years, which mainly includes novel green-lubrication concepts that come from exploring and exploiting surface engineering through the use of diamond-like-carbon (DLC) coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信