使用非负矩阵分解和概念格约简来可视化数据

V. Snás̃el, H.M. Dahwa Abdulla, M. Polovincak
{"title":"使用非负矩阵分解和概念格约简来可视化数据","authors":"V. Snás̃el, H.M. Dahwa Abdulla, M. Polovincak","doi":"10.1109/ICADIWT.2008.4664362","DOIUrl":null,"url":null,"abstract":"The large volume of data from the large-scale computing platforms for high-fidelity design and simulations, and instrumentation for gathering scientific as well as business data, and huge information in the web, give us some problems if we want to compute all concepts from huge incidence matrix. In some cases, we do not need to compute all concepts, but only some of them. In this paper, we proposed minimizing incidence matrix by using non-negative matrix factorization (NMF), because non-negative matrix factorization (NMF) is an emerging technique with a wide spectrum of potential applications in biomedical data analysis. Modified matrix has lower dimensions and acts as an input for some known algorithms for lattice construction.","PeriodicalId":189871,"journal":{"name":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using nonnegative matrix factorization and concept lattice reduction to visualizing data\",\"authors\":\"V. Snás̃el, H.M. Dahwa Abdulla, M. Polovincak\",\"doi\":\"10.1109/ICADIWT.2008.4664362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large volume of data from the large-scale computing platforms for high-fidelity design and simulations, and instrumentation for gathering scientific as well as business data, and huge information in the web, give us some problems if we want to compute all concepts from huge incidence matrix. In some cases, we do not need to compute all concepts, but only some of them. In this paper, we proposed minimizing incidence matrix by using non-negative matrix factorization (NMF), because non-negative matrix factorization (NMF) is an emerging technique with a wide spectrum of potential applications in biomedical data analysis. Modified matrix has lower dimensions and acts as an input for some known algorithms for lattice construction.\",\"PeriodicalId\":189871,\"journal\":{\"name\":\"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICADIWT.2008.4664362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2008.4664362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

高保真设计和仿真的大型计算平台的大量数据,以及收集科学和商业数据的仪器,以及网络上的大量信息,给我们带来了一些问题,如果我们想从巨大的关联矩阵中计算所有概念。在某些情况下,我们不需要计算所有的概念,而只需要计算其中的一些。由于非负矩阵分解(NMF)是一种新兴的生物医学数据分析技术,在生物医学数据分析中具有广泛的应用前景,因此本文提出利用非负矩阵分解(NMF)最小化关联矩阵。修正矩阵具有较低的维数,并作为一些已知的晶格构造算法的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using nonnegative matrix factorization and concept lattice reduction to visualizing data
The large volume of data from the large-scale computing platforms for high-fidelity design and simulations, and instrumentation for gathering scientific as well as business data, and huge information in the web, give us some problems if we want to compute all concepts from huge incidence matrix. In some cases, we do not need to compute all concepts, but only some of them. In this paper, we proposed minimizing incidence matrix by using non-negative matrix factorization (NMF), because non-negative matrix factorization (NMF) is an emerging technique with a wide spectrum of potential applications in biomedical data analysis. Modified matrix has lower dimensions and acts as an input for some known algorithms for lattice construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信