基于人工神经网络的图像压缩

P. V. Rao, S. Madhusudana, Nachiketh S.S., K. Keerthi
{"title":"基于人工神经网络的图像压缩","authors":"P. V. Rao, S. Madhusudana, Nachiketh S.S., K. Keerthi","doi":"10.1109/ICMLC.2010.33","DOIUrl":null,"url":null,"abstract":"This paper explores the application of artificial neural networks to image compression. An image compressing algorithm based on Back Propagation (BP) network is developed after image pre-processing. By implementing the proposed scheme the influence of different transfer functions and compression ratios within the scheme is investigated. It has been demonstrated through several experiments that peak-signal-to-noise ratio (PSNR) almost remains same for all compression ratios while mean square error (MSE) varies.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"134 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Image Compression using Artificial Neural Networks\",\"authors\":\"P. V. Rao, S. Madhusudana, Nachiketh S.S., K. Keerthi\",\"doi\":\"10.1109/ICMLC.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the application of artificial neural networks to image compression. An image compressing algorithm based on Back Propagation (BP) network is developed after image pre-processing. By implementing the proposed scheme the influence of different transfer functions and compression ratios within the scheme is investigated. It has been demonstrated through several experiments that peak-signal-to-noise ratio (PSNR) almost remains same for all compression ratios while mean square error (MSE) varies.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"134 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文探讨了人工神经网络在图像压缩中的应用。在对图像进行预处理后,提出了一种基于BP网络的图像压缩算法。通过实施该方案,研究了方案内不同传递函数和压缩比的影响。通过几个实验已经证明,峰值信噪比(PSNR)几乎保持相同的所有压缩比,而均方误差(MSE)变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Compression using Artificial Neural Networks
This paper explores the application of artificial neural networks to image compression. An image compressing algorithm based on Back Propagation (BP) network is developed after image pre-processing. By implementing the proposed scheme the influence of different transfer functions and compression ratios within the scheme is investigated. It has been demonstrated through several experiments that peak-signal-to-noise ratio (PSNR) almost remains same for all compression ratios while mean square error (MSE) varies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信