P. V. Rao, S. Madhusudana, Nachiketh S.S., K. Keerthi
{"title":"基于人工神经网络的图像压缩","authors":"P. V. Rao, S. Madhusudana, Nachiketh S.S., K. Keerthi","doi":"10.1109/ICMLC.2010.33","DOIUrl":null,"url":null,"abstract":"This paper explores the application of artificial neural networks to image compression. An image compressing algorithm based on Back Propagation (BP) network is developed after image pre-processing. By implementing the proposed scheme the influence of different transfer functions and compression ratios within the scheme is investigated. It has been demonstrated through several experiments that peak-signal-to-noise ratio (PSNR) almost remains same for all compression ratios while mean square error (MSE) varies.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"134 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Image Compression using Artificial Neural Networks\",\"authors\":\"P. V. Rao, S. Madhusudana, Nachiketh S.S., K. Keerthi\",\"doi\":\"10.1109/ICMLC.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the application of artificial neural networks to image compression. An image compressing algorithm based on Back Propagation (BP) network is developed after image pre-processing. By implementing the proposed scheme the influence of different transfer functions and compression ratios within the scheme is investigated. It has been demonstrated through several experiments that peak-signal-to-noise ratio (PSNR) almost remains same for all compression ratios while mean square error (MSE) varies.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"134 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Compression using Artificial Neural Networks
This paper explores the application of artificial neural networks to image compression. An image compressing algorithm based on Back Propagation (BP) network is developed after image pre-processing. By implementing the proposed scheme the influence of different transfer functions and compression ratios within the scheme is investigated. It has been demonstrated through several experiments that peak-signal-to-noise ratio (PSNR) almost remains same for all compression ratios while mean square error (MSE) varies.