基于脑电的多检测器组合生物特征识别/认证

G. Safont, A. Salazar, A. Soriano, L. Vergara
{"title":"基于脑电的多检测器组合生物特征识别/认证","authors":"G. Safont, A. Salazar, A. Soriano, L. Vergara","doi":"10.1109/CCST.2012.6393564","DOIUrl":null,"url":null,"abstract":"The different structures of the brain of human beings produce spontaneous electroencephalographic (EEG) records that can be used to identify subjects. This paper presents a method for biometric authorization and identification based on EEG signals. The hardware uses a simple 2-signal electrode and a reference electrode configuration. The electrodes are positioned in such a way to be as unobtrusive as possible for the tested subject. Multiple features are extracted from the EEG signals that are processed by different classifiers. The system uses all the possible combinations between classifiers and features, fusing the best results. The fused decision improves the classification performance for even a small number of observation vectors. Results were obtained from a population of 50 subjects and 20 intruders, both in authentication and identification tasks. The system obtains an Equal Error Rate (EER) of 2.4% with only a few seconds for testing. The obtained performance measures are an improvement over the results of current EEG-based systems.","PeriodicalId":405531,"journal":{"name":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Combination of multiple detectors for EEG based biometric identification/authentication\",\"authors\":\"G. Safont, A. Salazar, A. Soriano, L. Vergara\",\"doi\":\"10.1109/CCST.2012.6393564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The different structures of the brain of human beings produce spontaneous electroencephalographic (EEG) records that can be used to identify subjects. This paper presents a method for biometric authorization and identification based on EEG signals. The hardware uses a simple 2-signal electrode and a reference electrode configuration. The electrodes are positioned in such a way to be as unobtrusive as possible for the tested subject. Multiple features are extracted from the EEG signals that are processed by different classifiers. The system uses all the possible combinations between classifiers and features, fusing the best results. The fused decision improves the classification performance for even a small number of observation vectors. Results were obtained from a population of 50 subjects and 20 intruders, both in authentication and identification tasks. The system obtains an Equal Error Rate (EER) of 2.4% with only a few seconds for testing. The obtained performance measures are an improvement over the results of current EEG-based systems.\",\"PeriodicalId\":405531,\"journal\":{\"name\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2012.6393564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2012.6393564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

人类大脑的不同结构产生的自发脑电图(EEG)记录可用于识别对象。提出了一种基于脑电信号的生物特征授权与识别方法。硬件使用一个简单的2信号电极和一个参考电极配置。电极被放置在这样一种方式,以尽可能不引人注目的测试对象。通过不同的分类器对脑电信号进行处理,提取出多种特征。该系统使用分类器和特征之间的所有可能组合,融合最佳结果。融合决策提高了对少量观测向量的分类性能。结果从50名受试者和20名入侵者中获得,包括身份验证和识别任务。该系统在几秒钟的测试时间内获得2.4%的等错误率(EER)。所获得的性能度量是对当前基于脑电图的系统结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of multiple detectors for EEG based biometric identification/authentication
The different structures of the brain of human beings produce spontaneous electroencephalographic (EEG) records that can be used to identify subjects. This paper presents a method for biometric authorization and identification based on EEG signals. The hardware uses a simple 2-signal electrode and a reference electrode configuration. The electrodes are positioned in such a way to be as unobtrusive as possible for the tested subject. Multiple features are extracted from the EEG signals that are processed by different classifiers. The system uses all the possible combinations between classifiers and features, fusing the best results. The fused decision improves the classification performance for even a small number of observation vectors. Results were obtained from a population of 50 subjects and 20 intruders, both in authentication and identification tasks. The system obtains an Equal Error Rate (EER) of 2.4% with only a few seconds for testing. The obtained performance measures are an improvement over the results of current EEG-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信