在图像处理工具方面的f变换

Pavel Vlasánek, I. Perfilieva
{"title":"在图像处理工具方面的f变换","authors":"Pavel Vlasánek, I. Perfilieva","doi":"10.5899/2016/JFSVA-00268","DOIUrl":null,"url":null,"abstract":"In the proposed contribution, we have discussed the usefulness of the higher degree $F^p$-transforms, $p=0,1$, for various tasks of image processing. We show that an image can be efficiently represented as a matrix of its F-transform components. We analyze the details and discuss advantages of this type of representation. We show that in a particular case, components of the $F^0$-transform can be obtained with the help of the operation of convolution, and components of the $F^1$-transform can be obtained with the help of convolution with three different kernels. We give image illustrations of all made assertions.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The F-transform in Terms of Image Processing Tools\",\"authors\":\"Pavel Vlasánek, I. Perfilieva\",\"doi\":\"10.5899/2016/JFSVA-00268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the proposed contribution, we have discussed the usefulness of the higher degree $F^p$-transforms, $p=0,1$, for various tasks of image processing. We show that an image can be efficiently represented as a matrix of its F-transform components. We analyze the details and discuss advantages of this type of representation. We show that in a particular case, components of the $F^0$-transform can be obtained with the help of the operation of convolution, and components of the $F^1$-transform can be obtained with the help of convolution with three different kernels. We give image illustrations of all made assertions.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2016/JFSVA-00268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2016/JFSVA-00268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在提议的贡献中,我们讨论了高阶$F^p$-变换,$p=0,1$,对于各种图像处理任务的有用性。我们证明了图像可以有效地表示为其f变换分量的矩阵。我们分析了细节,并讨论了这种表示的优点。我们证明了在特定情况下,F^0$-变换的分量可以通过卷积运算得到,F^1$-变换的分量可以通过三个不同核的卷积得到。我们给出了所有断言的图像说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The F-transform in Terms of Image Processing Tools
In the proposed contribution, we have discussed the usefulness of the higher degree $F^p$-transforms, $p=0,1$, for various tasks of image processing. We show that an image can be efficiently represented as a matrix of its F-transform components. We analyze the details and discuss advantages of this type of representation. We show that in a particular case, components of the $F^0$-transform can be obtained with the help of the operation of convolution, and components of the $F^1$-transform can be obtained with the help of convolution with three different kernels. We give image illustrations of all made assertions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信