一种用于脂溢性角化病恶性黑色素瘤特征的非侵入性自动皮肤癌检测系统

Mai. R. Ibraheem, Mohammed M Elmogy
{"title":"一种用于脂溢性角化病恶性黑色素瘤特征的非侵入性自动皮肤癌检测系统","authors":"Mai. R. Ibraheem, Mohammed M Elmogy","doi":"10.1109/ICCIS49240.2020.9257712","DOIUrl":null,"url":null,"abstract":"Due to the complexity of skin cancer treatment at later stages, the investigation of an efficient non-invasive automated system can help in guiding diagnosis. This paper proposes a non-invasive automatic system for characterizing malignant melanoma from seborrheic keratosis (BKL) using pixel-based segmentation and feature extraction techniques. The proposed system utilizes the pixel-based features to capture the main characteristics that discriminate BKL and malignant melanoma (MEL). The pixel-based technique enabled single-pixel distributions for color and texture that results in good discrimination of pigmented skin lesions from unaffected skin regions in the processed image. In the experimental results, the obtained characterization result using gradient boosted trees (GBT) is promising and outperformed other state-of-the-art techniques, which had an accuracy equaled to 97.5%, Dice measure equaled to 98.5%, sensitivity equaled to 98.3%, and specificity equaled to 92.1%.","PeriodicalId":425637,"journal":{"name":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Non-invasive Automatic Skin Cancer Detection System for Characterizing Malignant Melanoma from Seborrheic Keratosis\",\"authors\":\"Mai. R. Ibraheem, Mohammed M Elmogy\",\"doi\":\"10.1109/ICCIS49240.2020.9257712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the complexity of skin cancer treatment at later stages, the investigation of an efficient non-invasive automated system can help in guiding diagnosis. This paper proposes a non-invasive automatic system for characterizing malignant melanoma from seborrheic keratosis (BKL) using pixel-based segmentation and feature extraction techniques. The proposed system utilizes the pixel-based features to capture the main characteristics that discriminate BKL and malignant melanoma (MEL). The pixel-based technique enabled single-pixel distributions for color and texture that results in good discrimination of pigmented skin lesions from unaffected skin regions in the processed image. In the experimental results, the obtained characterization result using gradient boosted trees (GBT) is promising and outperformed other state-of-the-art techniques, which had an accuracy equaled to 97.5%, Dice measure equaled to 98.5%, sensitivity equaled to 98.3%, and specificity equaled to 92.1%.\",\"PeriodicalId\":425637,\"journal\":{\"name\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS49240.2020.9257712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS49240.2020.9257712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于皮肤癌晚期治疗的复杂性,研究一种高效的非侵入性自动化系统可以帮助指导诊断。本文提出了一种基于像素分割和特征提取技术的非侵入性自动识别脂溢性角化病(BKL)恶性黑色素瘤的系统。该系统利用基于像素的特征来捕获区分BKL和恶性黑色素瘤(MEL)的主要特征。基于像素的技术支持颜色和纹理的单像素分布,从而在处理图像中很好地区分色素沉着的皮肤病变和未受影响的皮肤区域。在实验结果中,使用梯度增强树(gradient boosting trees, GBT)获得的表征结果是有希望的,优于其他最先进的技术,准确率为97.5%,Dice测量值为98.5%,灵敏度为98.3%,特异性为92.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non-invasive Automatic Skin Cancer Detection System for Characterizing Malignant Melanoma from Seborrheic Keratosis
Due to the complexity of skin cancer treatment at later stages, the investigation of an efficient non-invasive automated system can help in guiding diagnosis. This paper proposes a non-invasive automatic system for characterizing malignant melanoma from seborrheic keratosis (BKL) using pixel-based segmentation and feature extraction techniques. The proposed system utilizes the pixel-based features to capture the main characteristics that discriminate BKL and malignant melanoma (MEL). The pixel-based technique enabled single-pixel distributions for color and texture that results in good discrimination of pigmented skin lesions from unaffected skin regions in the processed image. In the experimental results, the obtained characterization result using gradient boosted trees (GBT) is promising and outperformed other state-of-the-art techniques, which had an accuracy equaled to 97.5%, Dice measure equaled to 98.5%, sensitivity equaled to 98.3%, and specificity equaled to 92.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信