基于自噪声降噪的球面谐波对角卸载波束形成自治系统DOA估计

D. Salvati, C. Drioli, G. Foresti
{"title":"基于自噪声降噪的球面谐波对角卸载波束形成自治系统DOA估计","authors":"D. Salvati, C. Drioli, G. Foresti","doi":"10.1109/WASPAA52581.2021.9632772","DOIUrl":null,"url":null,"abstract":"A method to improve the localization of a sound source using a spherical microphone array embedded into autonomous systems is presented. The method is based on a low-complexity diagonal unloading (DU) beamforming in the spherical harmonic (SH) domain using a frequency smoothing power transform (FSPT) of the covariance matrices with a novel ego-noise reduction. The attenuation of the ego-noise in the signal-plus-ego-noise broadband FSTP covariance matrix is achieved by estimating the FSPT ego-noise covariance matrix and exploiting the subspace orthogonality property using a diagonal unloading procedure. Experiments with controlled real-world recordings performed by an aerial drone equipped with a 19-microphone spherical array while sensing a flying target drone demonstrate the efficiency of the proposed method.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spherical Harmonic Diagonal Unloading Beamforming with Ego-Noise Reduction for DOA Estimation from Autonomous Systems\",\"authors\":\"D. Salvati, C. Drioli, G. Foresti\",\"doi\":\"10.1109/WASPAA52581.2021.9632772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to improve the localization of a sound source using a spherical microphone array embedded into autonomous systems is presented. The method is based on a low-complexity diagonal unloading (DU) beamforming in the spherical harmonic (SH) domain using a frequency smoothing power transform (FSPT) of the covariance matrices with a novel ego-noise reduction. The attenuation of the ego-noise in the signal-plus-ego-noise broadband FSTP covariance matrix is achieved by estimating the FSPT ego-noise covariance matrix and exploiting the subspace orthogonality property using a diagonal unloading procedure. Experiments with controlled real-world recordings performed by an aerial drone equipped with a 19-microphone spherical array while sensing a flying target drone demonstrate the efficiency of the proposed method.\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用嵌入到自主系统中的球形麦克风阵列来提高声源定位的方法。该方法利用协方差矩阵的频率平滑功率变换(FSPT)在球谐域中进行低复杂度的对角卸载波束形成,并采用了一种新颖的自噪声抑制方法。通过估计宽带FSTP自噪声协方差矩阵并利用子空间正交性,采用对角卸载方法实现了信号加自噪声协方差矩阵中自噪声的衰减。配备19个麦克风球面阵列的空中无人机在感知飞行目标无人机时进行的受控真实记录实验证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical Harmonic Diagonal Unloading Beamforming with Ego-Noise Reduction for DOA Estimation from Autonomous Systems
A method to improve the localization of a sound source using a spherical microphone array embedded into autonomous systems is presented. The method is based on a low-complexity diagonal unloading (DU) beamforming in the spherical harmonic (SH) domain using a frequency smoothing power transform (FSPT) of the covariance matrices with a novel ego-noise reduction. The attenuation of the ego-noise in the signal-plus-ego-noise broadband FSTP covariance matrix is achieved by estimating the FSPT ego-noise covariance matrix and exploiting the subspace orthogonality property using a diagonal unloading procedure. Experiments with controlled real-world recordings performed by an aerial drone equipped with a 19-microphone spherical array while sensing a flying target drone demonstrate the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信