基于多尺度小波分解的函数自回归预测凤尾鱼月渔获量

Nibaldo Rodríguez, E. Yañez
{"title":"基于多尺度小波分解的函数自回归预测凤尾鱼月渔获量","authors":"Nibaldo Rodríguez, E. Yañez","doi":"10.1109/ICICISYS.2009.5357795","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-scale stationary wavelet decomposition technique combined with functional auto-regression is used to improve the prediction accuracy and parsimony of anchovy monthly catches forecasting in area north of Chile (18 21'S-24 S). The general idea behind this approach is to decompose the observed anchovy catches data into low frequency (LF) component and high frequency (HF) component by using stationary wavelet transform and to separately forecast each frequency component. The forecasting strategy was evaluated for a period of 42 years, starting from 1-Jun-1963 to 31-Dec-2007 and we find that the proposed forecasting method achieves a 98% of the explained variance with a reduced parsimony and high accuracy. Besides, is showed that the wavelet-autoregressive forecaster is more accurate and performs better than both multilayer perceptron neural network model and functional autoregressive model.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale wavelet decomposition based functional autoregression for monthly anchovy catches forecasting\",\"authors\":\"Nibaldo Rodríguez, E. Yañez\",\"doi\":\"10.1109/ICICISYS.2009.5357795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-scale stationary wavelet decomposition technique combined with functional auto-regression is used to improve the prediction accuracy and parsimony of anchovy monthly catches forecasting in area north of Chile (18 21'S-24 S). The general idea behind this approach is to decompose the observed anchovy catches data into low frequency (LF) component and high frequency (HF) component by using stationary wavelet transform and to separately forecast each frequency component. The forecasting strategy was evaluated for a period of 42 years, starting from 1-Jun-1963 to 31-Dec-2007 and we find that the proposed forecasting method achieves a 98% of the explained variance with a reduced parsimony and high accuracy. Besides, is showed that the wavelet-autoregressive forecaster is more accurate and performs better than both multilayer perceptron neural network model and functional autoregressive model.\",\"PeriodicalId\":206575,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2009.5357795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5357795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用多尺度平稳小波分解与函数自回归相结合的方法,提高了智利北部地区(18 21 -24 S)鳀鱼月捕鱼量预报的精度和精简性。该方法的基本思想是将观测到的鳀鱼捕鱼量数据利用平稳小波变换分解为低频(LF)分量和高频(HF)分量,并分别对各频率分量进行预报。对1963年6月1日至2007年12月31日42年的预测策略进行了评估,结果表明,该预测方法可达到98%的解释方差,且具有较低的简约性和较高的准确性。结果表明,与多层感知器神经网络模型和泛函自回归模型相比,小波自回归模型具有更高的预测精度和更好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale wavelet decomposition based functional autoregression for monthly anchovy catches forecasting
In this paper, a multi-scale stationary wavelet decomposition technique combined with functional auto-regression is used to improve the prediction accuracy and parsimony of anchovy monthly catches forecasting in area north of Chile (18 21'S-24 S). The general idea behind this approach is to decompose the observed anchovy catches data into low frequency (LF) component and high frequency (HF) component by using stationary wavelet transform and to separately forecast each frequency component. The forecasting strategy was evaluated for a period of 42 years, starting from 1-Jun-1963 to 31-Dec-2007 and we find that the proposed forecasting method achieves a 98% of the explained variance with a reduced parsimony and high accuracy. Besides, is showed that the wavelet-autoregressive forecaster is more accurate and performs better than both multilayer perceptron neural network model and functional autoregressive model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信