基于决策树算法的AWGN信道调频识别分析

M. R. Hidayat, M. A. Wibisono, Yana Yohana, S. Sambasri, Y. Zainal
{"title":"基于决策树算法的AWGN信道调频识别分析","authors":"M. R. Hidayat, M. A. Wibisono, Yana Yohana, S. Sambasri, Y. Zainal","doi":"10.1109/icwt.2018.8527784","DOIUrl":null,"url":null,"abstract":"A decision tree algorithm for identification of frequency modulation analog and digital signal are formulated. The paper constructed identification parameters with minimized knowledge of signal characterization between digital and analog signal with AWGN Channel. Moreover the plotting noise is being plotted for each identified modulation. Indication performance based on binary decision threshold has represented and resulted signal-to-noise as high as 5 dB with computer simulation","PeriodicalId":356888,"journal":{"name":"2018 4th International Conference on Wireless and Telematics (ICWT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Frequency Modulation Identification Based on Decision Tree Algorithm with AWGN Channel\",\"authors\":\"M. R. Hidayat, M. A. Wibisono, Yana Yohana, S. Sambasri, Y. Zainal\",\"doi\":\"10.1109/icwt.2018.8527784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A decision tree algorithm for identification of frequency modulation analog and digital signal are formulated. The paper constructed identification parameters with minimized knowledge of signal characterization between digital and analog signal with AWGN Channel. Moreover the plotting noise is being plotted for each identified modulation. Indication performance based on binary decision threshold has represented and resulted signal-to-noise as high as 5 dB with computer simulation\",\"PeriodicalId\":356888,\"journal\":{\"name\":\"2018 4th International Conference on Wireless and Telematics (ICWT)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Wireless and Telematics (ICWT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icwt.2018.8527784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Wireless and Telematics (ICWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icwt.2018.8527784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于调频模拟信号和数字信号识别的决策树算法。在AWGN信道中,利用最小的信号特性知识构造了数字信号和模拟信号之间的识别参数。此外,还绘制了每个已识别调制的绘图噪声。基于二值决策阈值的指示性能通过计算机仿真得到了高达5 dB的信噪比
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Frequency Modulation Identification Based on Decision Tree Algorithm with AWGN Channel
A decision tree algorithm for identification of frequency modulation analog and digital signal are formulated. The paper constructed identification parameters with minimized knowledge of signal characterization between digital and analog signal with AWGN Channel. Moreover the plotting noise is being plotted for each identified modulation. Indication performance based on binary decision threshold has represented and resulted signal-to-noise as high as 5 dB with computer simulation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信