{"title":"改进的HYPR算法——一种很有前途的低剂量成像技术","authors":"S. Desai, L. Kulkarni","doi":"10.1109/IADCC.2015.7154798","DOIUrl":null,"url":null,"abstract":"Medical imaging has grown tremendously over years. The CT and MRI are well thought-out to be most extensively used imaging modalities. MRI is less dangerous, but one cannot underrate the unsafe side effects of CT. Current study reveals the actuality of escalating risk of cancer as side effect for patients who go through recurring CT scanning. Consequently the devise of low dose imaging protocol is of the enormous significance in the current scenario. In this paper we present modified highly constrained back projection (M-HYPR) as a most promising method to address low dose imaging. HYPR is basically an iterative process in nature and hence computational greedy, and is the root cause for being neglected by CT developers. The weight matrix module, being main reason for huge computation time is modified in this work. Considerable speed up factor is recorded, as compared original HYPR (O-HYPR) on a lone thread CPU implementation. The superiority of reconstructed image in each platform has been analyzed. The evidenced results convey substantial improved performance by M-HYPR algorithm, and appreciable usage of GPU in medical image applications.","PeriodicalId":123908,"journal":{"name":"2015 IEEE International Advance Computing Conference (IACC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified HYPR algorithm - A promising technique for low dose imaging\",\"authors\":\"S. Desai, L. Kulkarni\",\"doi\":\"10.1109/IADCC.2015.7154798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical imaging has grown tremendously over years. The CT and MRI are well thought-out to be most extensively used imaging modalities. MRI is less dangerous, but one cannot underrate the unsafe side effects of CT. Current study reveals the actuality of escalating risk of cancer as side effect for patients who go through recurring CT scanning. Consequently the devise of low dose imaging protocol is of the enormous significance in the current scenario. In this paper we present modified highly constrained back projection (M-HYPR) as a most promising method to address low dose imaging. HYPR is basically an iterative process in nature and hence computational greedy, and is the root cause for being neglected by CT developers. The weight matrix module, being main reason for huge computation time is modified in this work. Considerable speed up factor is recorded, as compared original HYPR (O-HYPR) on a lone thread CPU implementation. The superiority of reconstructed image in each platform has been analyzed. The evidenced results convey substantial improved performance by M-HYPR algorithm, and appreciable usage of GPU in medical image applications.\",\"PeriodicalId\":123908,\"journal\":{\"name\":\"2015 IEEE International Advance Computing Conference (IACC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2015.7154798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2015.7154798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modified HYPR algorithm - A promising technique for low dose imaging
Medical imaging has grown tremendously over years. The CT and MRI are well thought-out to be most extensively used imaging modalities. MRI is less dangerous, but one cannot underrate the unsafe side effects of CT. Current study reveals the actuality of escalating risk of cancer as side effect for patients who go through recurring CT scanning. Consequently the devise of low dose imaging protocol is of the enormous significance in the current scenario. In this paper we present modified highly constrained back projection (M-HYPR) as a most promising method to address low dose imaging. HYPR is basically an iterative process in nature and hence computational greedy, and is the root cause for being neglected by CT developers. The weight matrix module, being main reason for huge computation time is modified in this work. Considerable speed up factor is recorded, as compared original HYPR (O-HYPR) on a lone thread CPU implementation. The superiority of reconstructed image in each platform has been analyzed. The evidenced results convey substantial improved performance by M-HYPR algorithm, and appreciable usage of GPU in medical image applications.