盒计数算法的精度分析

A. Górski, S. Drożdż, A. Mokrzycka, A. Mokrzycka, J. Pawlik, J. Pawlik
{"title":"盒计数算法的精度分析","authors":"A. Górski, S. Drożdż, A. Mokrzycka, A. Mokrzycka, J. Pawlik, J. Pawlik","doi":"10.12693/APhysPolA.121.B-28","DOIUrl":null,"url":null,"abstract":"Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational error was found to have power scaling with respect to the number of data points in the sample ($n_{tot}$). For fractals embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed generalized fractal exponents' accuracy.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accuracy analysis of the box-counting algorithm\",\"authors\":\"A. Górski, S. Drożdż, A. Mokrzycka, A. Mokrzycka, J. Pawlik, J. Pawlik\",\"doi\":\"10.12693/APhysPolA.121.B-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational error was found to have power scaling with respect to the number of data points in the sample ($n_{tot}$). For fractals embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed generalized fractal exponents' accuracy.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12693/APhysPolA.121.B-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12693/APhysPolA.121.B-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了分形指数数值计算的盒计数算法的精度。为此,对几个数学分形集样本进行了分析。结果表明,对数-对数图中分形尺度拟合的标准差严重低估了实际误差。我们发现实际的计算误差与样本($n_{t}$)中的数据点数目呈幂次缩放。对于嵌入在二维空间中的分形,误差大于嵌入在一维空间中的分形。对于分形函数,误差甚至更大。所得公式对广义分形指数的计算精度给出了较为真实的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy analysis of the box-counting algorithm
Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational error was found to have power scaling with respect to the number of data points in the sample ($n_{tot}$). For fractals embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed generalized fractal exponents' accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信