一种具有索赔关系的基于优化的真值发现方法

Jiazhu Xia, Ying He, Yuxin Jin, Xianyu Bao, Gongqing Wu
{"title":"一种具有索赔关系的基于优化的真值发现方法","authors":"Jiazhu Xia, Ying He, Yuxin Jin, Xianyu Bao, Gongqing Wu","doi":"10.1109/ICBK.2019.00046","DOIUrl":null,"url":null,"abstract":"With the advent of the era of big data, the information from multi-sources often conflicts due to that errors and fake information are inevitable. Therefore, how to obtain the most trustworthy or true information (i.e. truth) people need gradually becomes a troublesome problem. In order to meet this challenge, a novel hot technology named truth discovery that can infer the truth and estimate the reliability of the source without supervision has attracted more and more attention. However, most existing truth discovery methods only consider that the information is either same or different rather than the fine-grained relation between them, such as inclusion, support, mutual exclusion, etc. Actually, this situation frequently exists in real-world applications. To tackle the aforementioned issue, we propose a novel truth discovery method named OTDCR in this paper, which can handle the fine-grained relation between the information and infer the truth more effectively through modeling the relation. In addition, a novel method of processing abnormal values is applied to the preprocessing of truth discovery, which is specially designed for categorical data with the relation. Experiments in real dataset show our method is more effective than several outstanding methods.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Optimization-Based Truth Discovery Method with Claim Relation\",\"authors\":\"Jiazhu Xia, Ying He, Yuxin Jin, Xianyu Bao, Gongqing Wu\",\"doi\":\"10.1109/ICBK.2019.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the era of big data, the information from multi-sources often conflicts due to that errors and fake information are inevitable. Therefore, how to obtain the most trustworthy or true information (i.e. truth) people need gradually becomes a troublesome problem. In order to meet this challenge, a novel hot technology named truth discovery that can infer the truth and estimate the reliability of the source without supervision has attracted more and more attention. However, most existing truth discovery methods only consider that the information is either same or different rather than the fine-grained relation between them, such as inclusion, support, mutual exclusion, etc. Actually, this situation frequently exists in real-world applications. To tackle the aforementioned issue, we propose a novel truth discovery method named OTDCR in this paper, which can handle the fine-grained relation between the information and infer the truth more effectively through modeling the relation. In addition, a novel method of processing abnormal values is applied to the preprocessing of truth discovery, which is specially designed for categorical data with the relation. Experiments in real dataset show our method is more effective than several outstanding methods.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着大数据时代的到来,多来源的信息往往会发生冲突,错误和虚假信息在所难免。因此,如何获得人们需要的最可信或最真实的信息(即真相)逐渐成为一个棘手的问题。为了应对这一挑战,一种能够在不受监督的情况下对消息源的真实性进行推断和可靠性估计的新技术——真相发现技术越来越受到人们的关注。然而,现有的大多数真值发现方法只考虑信息的相同或不同,而不考虑它们之间的细粒度关系,如包含、支持、互斥等。实际上,这种情况在实际应用程序中经常存在。为了解决上述问题,本文提出了一种新的真值发现方法OTDCR,该方法可以处理信息之间的细粒度关系,并通过对关系的建模更有效地推断出真值。此外,将一种新的异常值处理方法应用于真值发现的预处理中,该方法是专门针对具有关系的范畴数据而设计的。在实际数据集上的实验表明,该方法比几种已有的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimization-Based Truth Discovery Method with Claim Relation
With the advent of the era of big data, the information from multi-sources often conflicts due to that errors and fake information are inevitable. Therefore, how to obtain the most trustworthy or true information (i.e. truth) people need gradually becomes a troublesome problem. In order to meet this challenge, a novel hot technology named truth discovery that can infer the truth and estimate the reliability of the source without supervision has attracted more and more attention. However, most existing truth discovery methods only consider that the information is either same or different rather than the fine-grained relation between them, such as inclusion, support, mutual exclusion, etc. Actually, this situation frequently exists in real-world applications. To tackle the aforementioned issue, we propose a novel truth discovery method named OTDCR in this paper, which can handle the fine-grained relation between the information and infer the truth more effectively through modeling the relation. In addition, a novel method of processing abnormal values is applied to the preprocessing of truth discovery, which is specially designed for categorical data with the relation. Experiments in real dataset show our method is more effective than several outstanding methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信