利用循环一致对抗网络提高唇腭裂语音的可理解性

Protima Nomo Sudro, Rohan Kumar Das, R. Sinha, S. Prasanna
{"title":"利用循环一致对抗网络提高唇腭裂语音的可理解性","authors":"Protima Nomo Sudro, Rohan Kumar Das, R. Sinha, S. Prasanna","doi":"10.1109/SLT48900.2021.9383543","DOIUrl":null,"url":null,"abstract":"Cleft lip and palate (CLP) refer to a congenital craniofacial condition that causes various speech-related disorders. As a result of structural and functional deformities, the affected subjects’ speech intelligibility is significantly degraded, limiting the accessibility and usability of speech-controlled devices. Towards addressing this problem, it is desirable to improve the CLP speech intelligibility. Moreover, it would be useful during speech therapy. In this study, the cycle-consistent adversarial network (CycleGAN) method is exploited for improving CLP speech intelligibility. The model is trained on native Kannada-speaking childrens’ speech data. The effectiveness of the proposed approach is also measured using automatic speech recognition performance. Further, subjective evaluation is performed, and those results also confirm the intelligibility improvement in the enhanced speech over the original.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing the Intelligibility of Cleft Lip and Palate Speech Using Cycle-Consistent Adversarial Networks\",\"authors\":\"Protima Nomo Sudro, Rohan Kumar Das, R. Sinha, S. Prasanna\",\"doi\":\"10.1109/SLT48900.2021.9383543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cleft lip and palate (CLP) refer to a congenital craniofacial condition that causes various speech-related disorders. As a result of structural and functional deformities, the affected subjects’ speech intelligibility is significantly degraded, limiting the accessibility and usability of speech-controlled devices. Towards addressing this problem, it is desirable to improve the CLP speech intelligibility. Moreover, it would be useful during speech therapy. In this study, the cycle-consistent adversarial network (CycleGAN) method is exploited for improving CLP speech intelligibility. The model is trained on native Kannada-speaking childrens’ speech data. The effectiveness of the proposed approach is also measured using automatic speech recognition performance. Further, subjective evaluation is performed, and those results also confirm the intelligibility improvement in the enhanced speech over the original.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

唇腭裂(CLP)是一种先天性颅面疾病,会导致各种语言相关障碍。由于结构和功能的畸形,受影响的受试者的语音清晰度明显下降,限制了语音控制设备的可访问性和可用性。为了解决这一问题,需要提高CLP语音的可理解性。此外,它在语言治疗中也很有用。在本研究中,利用周期一致对抗网络(CycleGAN)方法来提高CLP语音可理解性。该模型是在母语卡纳达语儿童的语言数据上进行训练的。该方法的有效性也通过自动语音识别性能来衡量。此外,进行了主观评价,这些结果也证实了增强语音的可理解性比原始语音有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Intelligibility of Cleft Lip and Palate Speech Using Cycle-Consistent Adversarial Networks
Cleft lip and palate (CLP) refer to a congenital craniofacial condition that causes various speech-related disorders. As a result of structural and functional deformities, the affected subjects’ speech intelligibility is significantly degraded, limiting the accessibility and usability of speech-controlled devices. Towards addressing this problem, it is desirable to improve the CLP speech intelligibility. Moreover, it would be useful during speech therapy. In this study, the cycle-consistent adversarial network (CycleGAN) method is exploited for improving CLP speech intelligibility. The model is trained on native Kannada-speaking childrens’ speech data. The effectiveness of the proposed approach is also measured using automatic speech recognition performance. Further, subjective evaluation is performed, and those results also confirm the intelligibility improvement in the enhanced speech over the original.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信