LR-ProtoNet:低分辨率少镜头识别和分类的元学习

Yijie Yuan, Shaopeng Jia, Fei Wang, Xiong Chen
{"title":"LR-ProtoNet:低分辨率少镜头识别和分类的元学习","authors":"Yijie Yuan, Shaopeng Jia, Fei Wang, Xiong Chen","doi":"10.1109/ICNSC55942.2022.10004182","DOIUrl":null,"url":null,"abstract":"For the few-shot classification problem of low-resolution(LR) images, we propose a meta-learning method based on prototypical networks called LR-ProtoNet. The metric-based meta-learning algorithm mainly extracts the features of the support and query samples through the feature encoder and obtains the prediction categories from a metric module. Our core idea is to add feature-affine layers in the feature encoder to increase the feature distribution of LR images, and use Brownian Distance Covariance(BDC) in the metric module to capture the joint distribution and nonlinear relationship between different affine transformations. We down-sample standard few-shot image datasets to simulate LR images and conduct extensive ablation experiments and comparative studies of other meta methods in general image recognition and fine-grained classification. Experimental results demonstrate that our proposed model can effectively utilize low-resolution image information, achieving state-of-the-art performance compared to baseline works.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LR-ProtoNet: Meta-Learning for Low-Resolution Few-Shot Recognition and Classification\",\"authors\":\"Yijie Yuan, Shaopeng Jia, Fei Wang, Xiong Chen\",\"doi\":\"10.1109/ICNSC55942.2022.10004182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the few-shot classification problem of low-resolution(LR) images, we propose a meta-learning method based on prototypical networks called LR-ProtoNet. The metric-based meta-learning algorithm mainly extracts the features of the support and query samples through the feature encoder and obtains the prediction categories from a metric module. Our core idea is to add feature-affine layers in the feature encoder to increase the feature distribution of LR images, and use Brownian Distance Covariance(BDC) in the metric module to capture the joint distribution and nonlinear relationship between different affine transformations. We down-sample standard few-shot image datasets to simulate LR images and conduct extensive ablation experiments and comparative studies of other meta methods in general image recognition and fine-grained classification. Experimental results demonstrate that our proposed model can effectively utilize low-resolution image information, achieving state-of-the-art performance compared to baseline works.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对低分辨率图像的少镜头分类问题,提出了一种基于LR- protonet原型网络的元学习方法。基于度量的元学习算法主要通过特征编码器提取支持和查询样本的特征,并从度量模块中获得预测类别。我们的核心思想是在特征编码器中增加特征仿射层来增加LR图像的特征分布,并在度量模块中使用布朗距离协方差(brown Distance Covariance, BDC)来捕捉不同仿射变换之间的联合分布和非线性关系。我们对标准的少量图像数据集进行采样,以模拟LR图像,并在一般图像识别和细粒度分类中进行广泛的消融实验和其他元方法的比较研究。实验结果表明,我们提出的模型可以有效地利用低分辨率图像信息,与基线作品相比,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LR-ProtoNet: Meta-Learning for Low-Resolution Few-Shot Recognition and Classification
For the few-shot classification problem of low-resolution(LR) images, we propose a meta-learning method based on prototypical networks called LR-ProtoNet. The metric-based meta-learning algorithm mainly extracts the features of the support and query samples through the feature encoder and obtains the prediction categories from a metric module. Our core idea is to add feature-affine layers in the feature encoder to increase the feature distribution of LR images, and use Brownian Distance Covariance(BDC) in the metric module to capture the joint distribution and nonlinear relationship between different affine transformations. We down-sample standard few-shot image datasets to simulate LR images and conduct extensive ablation experiments and comparative studies of other meta methods in general image recognition and fine-grained classification. Experimental results demonstrate that our proposed model can effectively utilize low-resolution image information, achieving state-of-the-art performance compared to baseline works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信