提高双永磁励磁机双向调制效果的优化设计

L. Jian, J. Wei
{"title":"提高双永磁励磁机双向调制效果的优化设计","authors":"L. Jian, J. Wei","doi":"10.1109/INTMAG.2015.7157611","DOIUrl":null,"url":null,"abstract":"Summary form only given. Recently, dual-permanent-magnet-excited (DPME) machine has been proposed for low-speed large-torque direct drive applications [1]. Unlike traditional PM machines, the DPME machine employs two sets of PMs, one on stator and the other on rotor. It relies on the field harmonics to achieve electromechanical energy conversion, and the so-called bi-directional field modulation effect (BFME) is artfully engaged to guarantee the effective coupling between the magnetic field excited by the armature windings and those excited by the two sets of PMs. It has been demonstrated that in coaxial magnetic gears the shape factors of the ferromagnetic segments have profound impacts on the field modulation effect, and the transmitted torque density [2]. Therefore, the purpose of this paper is to investigate the optimum design method for improving the BFME of DPME machine, so as to further improve the pull-out torque of this new type of machine. Fig.1 shows the cross section view of the initial DPME machine, there are 23 rotor PMs and 27 stator PMs. Both rotor PMs and stator PMs are radially magnetized, thus each PM and its adjacent iron tooth form a pair of magnet poles. The three-phase armature windings are deployed in the 24 slots on stator, and there pole-pair number is equal to 4. The shape factors investigated are the inner width and the outer width of the rotor teeth, the inner width and the outer width of the stator teeth, and the depth of the rotor teeth, as shown in Fig.1. The depth of the stator teeth is not taken into consideration since it will affect the deployment of the armature windings. By using finite element method, the calculated impacts of these shape factors on the pull-out torque are also shown in Fig.1. Finally, the optimum design solution can be obtained by using statistical techniques such as response surface methodology. Fig.2 (a) shows the cross section view of the obtained optimum design solution, and its flux linkage distribution at no-load is shown in Fig.2(b). Comparison of the initial machine and optimum machine has been conducted. The back EMF waveforms and the pull-out torques at different current density are given in Fig.2 (c) and (d). The results demonstrated that the pull-out torque can be improved by 20 .3 % with the volume of PM used decreased by 8 .9 %.","PeriodicalId":381832,"journal":{"name":"2015 IEEE Magnetics Conference (INTERMAG)","volume":"86 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimum design for improving bi-directional modulating effect of dual-permanent-magnet-excited machine\",\"authors\":\"L. Jian, J. Wei\",\"doi\":\"10.1109/INTMAG.2015.7157611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Recently, dual-permanent-magnet-excited (DPME) machine has been proposed for low-speed large-torque direct drive applications [1]. Unlike traditional PM machines, the DPME machine employs two sets of PMs, one on stator and the other on rotor. It relies on the field harmonics to achieve electromechanical energy conversion, and the so-called bi-directional field modulation effect (BFME) is artfully engaged to guarantee the effective coupling between the magnetic field excited by the armature windings and those excited by the two sets of PMs. It has been demonstrated that in coaxial magnetic gears the shape factors of the ferromagnetic segments have profound impacts on the field modulation effect, and the transmitted torque density [2]. Therefore, the purpose of this paper is to investigate the optimum design method for improving the BFME of DPME machine, so as to further improve the pull-out torque of this new type of machine. Fig.1 shows the cross section view of the initial DPME machine, there are 23 rotor PMs and 27 stator PMs. Both rotor PMs and stator PMs are radially magnetized, thus each PM and its adjacent iron tooth form a pair of magnet poles. The three-phase armature windings are deployed in the 24 slots on stator, and there pole-pair number is equal to 4. The shape factors investigated are the inner width and the outer width of the rotor teeth, the inner width and the outer width of the stator teeth, and the depth of the rotor teeth, as shown in Fig.1. The depth of the stator teeth is not taken into consideration since it will affect the deployment of the armature windings. By using finite element method, the calculated impacts of these shape factors on the pull-out torque are also shown in Fig.1. Finally, the optimum design solution can be obtained by using statistical techniques such as response surface methodology. Fig.2 (a) shows the cross section view of the obtained optimum design solution, and its flux linkage distribution at no-load is shown in Fig.2(b). Comparison of the initial machine and optimum machine has been conducted. The back EMF waveforms and the pull-out torques at different current density are given in Fig.2 (c) and (d). The results demonstrated that the pull-out torque can be improved by 20 .3 % with the volume of PM used decreased by 8 .9 %.\",\"PeriodicalId\":381832,\"journal\":{\"name\":\"2015 IEEE Magnetics Conference (INTERMAG)\",\"volume\":\"86 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Magnetics Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTMAG.2015.7157611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Magnetics Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2015.7157611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。近年来,双永磁励磁(DPME)电机被提出用于低速大转矩直接驱动[1]。与传统的永磁电机不同,DPME电机采用两套永磁电机,一套在定子上,另一套在转子上。它依靠场谐波实现机电能量转换,并巧妙地利用所谓的双向场调制效应(BFME),保证了电枢绕组激发的磁场与两组永磁励磁的磁场之间的有效耦合。研究表明,在同轴磁齿轮中,铁磁片的形状因素对磁场调制效果和传递转矩密度有深远的影响[2]。因此,本文的目的是研究提高DPME机床BFME的优化设计方法,从而进一步提高这种新型机床的拉拔扭矩。图1为初始DPME电机的截面图,共有23个转子电机和27个定子电机。转子永磁电机和定子永磁电机都径向磁化,因此每个永磁电机及其相邻的铁齿形成一对磁极。定子上的24个槽中部署三相电枢绕组,其极对数为4。所研究的形状因素为转子齿的内宽外宽、定子齿的内宽外宽、转子齿的深度,如图1所示。定子齿的深度不考虑在内,因为它会影响电枢绕组的部署。通过有限元法计算得到这些形状因素对抽拔扭矩的影响也如图1所示。最后,利用响应面法等统计技术,得到最优设计方案。图2(a)为获得的最优设计方案截面图,其空载时磁链分布如图2(b)所示。对初始机和最优机进行了比较。图2 (c)和(d)给出了不同电流密度下的反电动势波形和拉出转矩。结果表明,当使用的PM体积减少8.9%时,拉出转矩可提高20.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum design for improving bi-directional modulating effect of dual-permanent-magnet-excited machine
Summary form only given. Recently, dual-permanent-magnet-excited (DPME) machine has been proposed for low-speed large-torque direct drive applications [1]. Unlike traditional PM machines, the DPME machine employs two sets of PMs, one on stator and the other on rotor. It relies on the field harmonics to achieve electromechanical energy conversion, and the so-called bi-directional field modulation effect (BFME) is artfully engaged to guarantee the effective coupling between the magnetic field excited by the armature windings and those excited by the two sets of PMs. It has been demonstrated that in coaxial magnetic gears the shape factors of the ferromagnetic segments have profound impacts on the field modulation effect, and the transmitted torque density [2]. Therefore, the purpose of this paper is to investigate the optimum design method for improving the BFME of DPME machine, so as to further improve the pull-out torque of this new type of machine. Fig.1 shows the cross section view of the initial DPME machine, there are 23 rotor PMs and 27 stator PMs. Both rotor PMs and stator PMs are radially magnetized, thus each PM and its adjacent iron tooth form a pair of magnet poles. The three-phase armature windings are deployed in the 24 slots on stator, and there pole-pair number is equal to 4. The shape factors investigated are the inner width and the outer width of the rotor teeth, the inner width and the outer width of the stator teeth, and the depth of the rotor teeth, as shown in Fig.1. The depth of the stator teeth is not taken into consideration since it will affect the deployment of the armature windings. By using finite element method, the calculated impacts of these shape factors on the pull-out torque are also shown in Fig.1. Finally, the optimum design solution can be obtained by using statistical techniques such as response surface methodology. Fig.2 (a) shows the cross section view of the obtained optimum design solution, and its flux linkage distribution at no-load is shown in Fig.2(b). Comparison of the initial machine and optimum machine has been conducted. The back EMF waveforms and the pull-out torques at different current density are given in Fig.2 (c) and (d). The results demonstrated that the pull-out torque can be improved by 20 .3 % with the volume of PM used decreased by 8 .9 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信