Suya Chao, Guang Yang, Min Nie, Yuan-hua Liu, Meiling Zhang
{"title":"变态入侵检测系统的全旋转量子卷积神经网络","authors":"Suya Chao, Guang Yang, Min Nie, Yuan-hua Liu, Meiling Zhang","doi":"10.1145/3573942.3574105","DOIUrl":null,"url":null,"abstract":"Intrusion detection system (IDS) is a significant mechanism to improve network security. As a promising technique, machine learning (ML) methods has been applied in IDS to obtain high classification accuracy. However, classical ML based IDS methods hit a bottleneck in computing performance in case of huge network traffic and complex high-dimensional data. Due to the parallelism, superposition, entanglement of quantum computing, quantum computing provides a new solution to speed up the classical ML algorithms. This paper proposes a novel IDS scheme based on full-rotation quantum convolutional neural network (FR-QCNN). The key component of the FR-QCNN is the quantum convolution filter, which is composed of coding layer, variational layer and measurement layer. Different from the traditional quantum convolutional neural network, a full-rotation quantum circuit is used in the variational layer of the FR-QCNN, realizing a complete parameter update in the model training. Experiment on dataset from KDD Cup shows that the IDS classification accuracy of FR-QCNN is higher than classical ML models such as convolutional neural network (CNN), decision tree (DT) and support vector machine (SVM), as well as higher than traditional quantum convolutional neural network(QCNN). Meanwhile, FR-QCNN and QCNN have lower space complexity and time complexity than classical ML methods.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-Rotation Quantum Convolutional Neural Network for Abnormal Intrusion Detection System\",\"authors\":\"Suya Chao, Guang Yang, Min Nie, Yuan-hua Liu, Meiling Zhang\",\"doi\":\"10.1145/3573942.3574105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion detection system (IDS) is a significant mechanism to improve network security. As a promising technique, machine learning (ML) methods has been applied in IDS to obtain high classification accuracy. However, classical ML based IDS methods hit a bottleneck in computing performance in case of huge network traffic and complex high-dimensional data. Due to the parallelism, superposition, entanglement of quantum computing, quantum computing provides a new solution to speed up the classical ML algorithms. This paper proposes a novel IDS scheme based on full-rotation quantum convolutional neural network (FR-QCNN). The key component of the FR-QCNN is the quantum convolution filter, which is composed of coding layer, variational layer and measurement layer. Different from the traditional quantum convolutional neural network, a full-rotation quantum circuit is used in the variational layer of the FR-QCNN, realizing a complete parameter update in the model training. Experiment on dataset from KDD Cup shows that the IDS classification accuracy of FR-QCNN is higher than classical ML models such as convolutional neural network (CNN), decision tree (DT) and support vector machine (SVM), as well as higher than traditional quantum convolutional neural network(QCNN). Meanwhile, FR-QCNN and QCNN have lower space complexity and time complexity than classical ML methods.\",\"PeriodicalId\":103293,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573942.3574105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full-Rotation Quantum Convolutional Neural Network for Abnormal Intrusion Detection System
Intrusion detection system (IDS) is a significant mechanism to improve network security. As a promising technique, machine learning (ML) methods has been applied in IDS to obtain high classification accuracy. However, classical ML based IDS methods hit a bottleneck in computing performance in case of huge network traffic and complex high-dimensional data. Due to the parallelism, superposition, entanglement of quantum computing, quantum computing provides a new solution to speed up the classical ML algorithms. This paper proposes a novel IDS scheme based on full-rotation quantum convolutional neural network (FR-QCNN). The key component of the FR-QCNN is the quantum convolution filter, which is composed of coding layer, variational layer and measurement layer. Different from the traditional quantum convolutional neural network, a full-rotation quantum circuit is used in the variational layer of the FR-QCNN, realizing a complete parameter update in the model training. Experiment on dataset from KDD Cup shows that the IDS classification accuracy of FR-QCNN is higher than classical ML models such as convolutional neural network (CNN), decision tree (DT) and support vector machine (SVM), as well as higher than traditional quantum convolutional neural network(QCNN). Meanwhile, FR-QCNN and QCNN have lower space complexity and time complexity than classical ML methods.