部署差异隐私时的随机性问题

S. Garfinkel, Philip Leclerc
{"title":"部署差异隐私时的随机性问题","authors":"S. Garfinkel, Philip Leclerc","doi":"10.1145/3411497.3420211","DOIUrl":null,"url":null,"abstract":"The U.S. Census Bureau is using differential privacy (DP) to protect confidential respondent data collected for the 2020 Decennial Census of Population & Housing. The Census Bureau's DP system is implemented in the Disclosure Avoidance System (DAS) and requires a source of random numbers. We estimate that the 2020 Census will require roughly 90TB of random bytes to protect the person and household tables. Although there are critical differences between cryptography and DP, they have similar requirements for randomness. We review the history of random number generation on deterministic computersømitt, including von Neumann's \"middle-square'' method, Mersenne Twister (MT19937) (the default NumPy random number generator, which we conclude is unacceptable for use in production privacy-preserving systems), and the Linux /dev/urandom device. We also review hardware random number generator schemes, including the use of so-called \"Lava Lamps'' and the Intel Secure Key RDRAND instruction. We finally present our plan for generating random bits in the Amazon Web Services (AWS) environment using AES-CTR-DRBG seeded by mixing bits from/dev/urandom and the Intel Secure Key RDSEED instruction, a compromise of our desire to rely on a trusted hardware implementation, the unease of our external reviewers in trusting a hardware-only implementation, and the need to generate so many random bits.","PeriodicalId":329371,"journal":{"name":"Proceedings of the 19th Workshop on Privacy in the Electronic Society","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Randomness Concerns when Deploying Differential Privacy\",\"authors\":\"S. Garfinkel, Philip Leclerc\",\"doi\":\"10.1145/3411497.3420211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The U.S. Census Bureau is using differential privacy (DP) to protect confidential respondent data collected for the 2020 Decennial Census of Population & Housing. The Census Bureau's DP system is implemented in the Disclosure Avoidance System (DAS) and requires a source of random numbers. We estimate that the 2020 Census will require roughly 90TB of random bytes to protect the person and household tables. Although there are critical differences between cryptography and DP, they have similar requirements for randomness. We review the history of random number generation on deterministic computersømitt, including von Neumann's \\\"middle-square'' method, Mersenne Twister (MT19937) (the default NumPy random number generator, which we conclude is unacceptable for use in production privacy-preserving systems), and the Linux /dev/urandom device. We also review hardware random number generator schemes, including the use of so-called \\\"Lava Lamps'' and the Intel Secure Key RDRAND instruction. We finally present our plan for generating random bits in the Amazon Web Services (AWS) environment using AES-CTR-DRBG seeded by mixing bits from/dev/urandom and the Intel Secure Key RDSEED instruction, a compromise of our desire to rely on a trusted hardware implementation, the unease of our external reviewers in trusting a hardware-only implementation, and the need to generate so many random bits.\",\"PeriodicalId\":329371,\"journal\":{\"name\":\"Proceedings of the 19th Workshop on Privacy in the Electronic Society\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th Workshop on Privacy in the Electronic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411497.3420211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411497.3420211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

美国人口普查局正在使用差分隐私(DP)来保护为2020年十年一次的人口和住房普查收集的机密受访者数据。人口普查局的数字统计系统是在避免披露制度下实施的,需要一个随机数的来源。我们估计2020年人口普查将需要大约90TB的随机字节来保护个人和家庭表格。尽管密码学和DP之间存在重大差异,但它们对随机性的要求相似。我们回顾了确定性计算机上随机数生成的历史,包括von Neumann的“中间平方”方法,Mersenne Twister (MT19937)(默认的NumPy随机数生成器,我们认为它不适合用于生产隐私保护系统)和Linux /dev/urandom设备。我们还回顾了硬件随机数生成器方案,包括所谓的“熔岩灯”和英特尔安全密钥RDRAND指令的使用。最后,我们提出了在Amazon Web Services (AWS)环境中使用aes - tr - drbg(通过混合来自/dev/urandom和英特尔安全密钥RDSEED指令的位)生成随机位的计划,这是我们希望依赖可信硬件实现的愿望的妥协,我们的外部审查者对信任硬件实现的不安,以及生成如此多随机位的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomness Concerns when Deploying Differential Privacy
The U.S. Census Bureau is using differential privacy (DP) to protect confidential respondent data collected for the 2020 Decennial Census of Population & Housing. The Census Bureau's DP system is implemented in the Disclosure Avoidance System (DAS) and requires a source of random numbers. We estimate that the 2020 Census will require roughly 90TB of random bytes to protect the person and household tables. Although there are critical differences between cryptography and DP, they have similar requirements for randomness. We review the history of random number generation on deterministic computersømitt, including von Neumann's "middle-square'' method, Mersenne Twister (MT19937) (the default NumPy random number generator, which we conclude is unacceptable for use in production privacy-preserving systems), and the Linux /dev/urandom device. We also review hardware random number generator schemes, including the use of so-called "Lava Lamps'' and the Intel Secure Key RDRAND instruction. We finally present our plan for generating random bits in the Amazon Web Services (AWS) environment using AES-CTR-DRBG seeded by mixing bits from/dev/urandom and the Intel Secure Key RDSEED instruction, a compromise of our desire to rely on a trusted hardware implementation, the unease of our external reviewers in trusting a hardware-only implementation, and the need to generate so many random bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信