利用机器学习检测早期阿尔茨海默病

S. Pavalarajan, B. Kumar, S. Hammed, K. Haripriya, C. Preethi, T. Mohanraj
{"title":"利用机器学习检测早期阿尔茨海默病","authors":"S. Pavalarajan, B. Kumar, S. Hammed, K. Haripriya, C. Preethi, T. Mohanraj","doi":"10.1109/ICACTA54488.2022.9752827","DOIUrl":null,"url":null,"abstract":"Identification of dementia is an important concern in medical image processing. Alzheimer is a common kind of dementia. Four machine learning models were designed for identifying this disease. This is classified as a classification problem, and the classification algorithms tested include logistic regression, support vector classifier, decision tree, and random forest classifier. The models are fine tuned by choosing optimal values for parameters that influences the accuracy of the model. The optimal parameters are found using a K-fold cross validation score, and the models are generated using that. The dataset used in the model is longitudinal cross sectional data from OASIS. It has been inferred from the results that random forest classifier performs well than the other models.","PeriodicalId":345370,"journal":{"name":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Alzheimer's disease at Early Stage using Machine Learning\",\"authors\":\"S. Pavalarajan, B. Kumar, S. Hammed, K. Haripriya, C. Preethi, T. Mohanraj\",\"doi\":\"10.1109/ICACTA54488.2022.9752827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of dementia is an important concern in medical image processing. Alzheimer is a common kind of dementia. Four machine learning models were designed for identifying this disease. This is classified as a classification problem, and the classification algorithms tested include logistic regression, support vector classifier, decision tree, and random forest classifier. The models are fine tuned by choosing optimal values for parameters that influences the accuracy of the model. The optimal parameters are found using a K-fold cross validation score, and the models are generated using that. The dataset used in the model is longitudinal cross sectional data from OASIS. It has been inferred from the results that random forest classifier performs well than the other models.\",\"PeriodicalId\":345370,\"journal\":{\"name\":\"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTA54488.2022.9752827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTA54488.2022.9752827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

痴呆症的识别是医学图像处理中的一个重要问题。阿尔茨海默病是一种常见的痴呆症。设计了四个机器学习模型来识别这种疾病。这被归类为一个分类问题,测试的分类算法包括逻辑回归、支持向量分类器、决策树和随机森林分类器。通过选择影响模型精度的参数的最优值对模型进行微调。使用k倍交叉验证分数找到最佳参数,并使用该分数生成模型。模型使用的数据集为OASIS的纵向截面数据。结果表明,随机森林分类器的分类性能优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Alzheimer's disease at Early Stage using Machine Learning
Identification of dementia is an important concern in medical image processing. Alzheimer is a common kind of dementia. Four machine learning models were designed for identifying this disease. This is classified as a classification problem, and the classification algorithms tested include logistic regression, support vector classifier, decision tree, and random forest classifier. The models are fine tuned by choosing optimal values for parameters that influences the accuracy of the model. The optimal parameters are found using a K-fold cross validation score, and the models are generated using that. The dataset used in the model is longitudinal cross sectional data from OASIS. It has been inferred from the results that random forest classifier performs well than the other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信